Journal of Mammary Gland Biology and Neoplasia

, Volume 12, Issue 2–3, pp 163–173 | Cite as

Hedgehog Signaling in Mammary Gland Development and Breast Cancer



The Hedgehog pathway is critical for many developmental processes, including the formation of several epidermal appendages. In the mammary gland strict regulation of the Hedgehog pathway is required for normal development. Alterations in Hedgehog signaling result in defects in both the embryonic and postnatal mammary gland. Activation of Hedgehog signaling either by mutation or misexpression of pathway members can lead to the development and/or progression of cancers in multiple organs. This review addresses the current understanding and controversies of Hedgehog signaling in mammary gland development and its potential role in promoting breast carcinogenesis and cancer progression.


Breast Cancer Mammary gland Development Hedgehog Patched Gli1 Gli2 Gli3 


Casein kinase 1 alpha


Cubitus interruptus


Desert hedgehog


Epithelial to mesenchymal transition


Fibroblast growth factor


Glycogen synthase kinase 3β


Growth arrest specific gene




Hedgehog interacting protein


Indian hedgehog


Intraflagellar transport




Protein kinase A




Sonic hedgehog


Suppressor of fused


Terminal end buds




Research in Dr. Andra Frost’s lab is supported by the American Cancer Society (RSG-05-207-01-TBE) and the NIH (CA97472 and CA105950). Dr. Sarah Hatsell’s work is supported by the Susan G. Komen Foundation and Philip Morris USA Inc. and by Philip Morris International. Appreciation is extended to Dr. Michael T. Lewis for thoughtful discussion and sharing of data during the writing of this manuscript.


  1. 1.
    Walterhouse DO, Lamm ML, Villavicencio E, Iannaccone PM. Emerging roles for hedgehog-patched-Gli signal transduction in reproduction. Biol Reprod 2003;69(1):8–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Hammerschmidt M, Brook A, McMahon AP. The world according to hedgehog. Trends Genet 1997;13(1):14–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Osterlund T, Kogerman P. Hedgehog signalling: how to get from Smo to Ci and Gli. Trends Cell Biol 2006;16(4):176–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen MM, Jr. The hedgehog signaling network. Am J Med Genet A 2003;123(1):5–28.PubMedCrossRefGoogle Scholar
  5. 5.
    Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL. Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 2002;129(20):4753–61.PubMedGoogle Scholar
  6. 6.
    Bai CB, Stephen D, Joyner AL. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell 2004;6(1):103–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Huangfu D, Anderson KV. Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 2006;133(1):3–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Olsen B. Nearly all cells in vertebrates and many cells in invertebrates contain primary cilia. Matrix Biol 2005;24(7):449–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Davenport JR, Yoder BK. An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 2005;289(6):F1159–69.PubMedCrossRefGoogle Scholar
  10. 10.
    Michaud EJ, Yoder BK. The primary cilium in cell signaling and cancer. Cancer Res 2006;66(13):6463–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu A, Wang B, Niswander LA. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 2005;132(13):3103–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Huangfu D, Anderson KV. Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 2005;102(32):11325–30.PubMedCrossRefGoogle Scholar
  13. 13.
    May SR, Ashique AM, Karlen M, Wang B, Shen Y, Zarbalis K, Reiter J, Ericson J, Peterson AS. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 2005;287(2):378–89.PubMedCrossRefGoogle Scholar
  14. 14.
    Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF. Vertebrate smoothened functions at the primary cilium. Nature 2005;437(7061):1018–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. Gli2 and gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 2005;1(4):e53.PubMedCrossRefGoogle Scholar
  16. 16.
    Stirling JW, Chandler JA. Ultrastructural studies of the female breast: I. 9 + 0 cilia in myoepithelial cells. Anat Rec 1976;186 3:413–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Koss LG, Brannan CD, Ashikari R. Histologic and ultrastructural features of adenoid cystic carcinoma of the breast. Cancer 1970;26 (6):1271–79.PubMedCrossRefGoogle Scholar
  18. 18.
    Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, Glick A, Wysolmerski JJ, Millar SE. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 2004;131(19):4819–29.PubMedCrossRefGoogle Scholar
  19. 19.
    Veltmaat JM, Van Veelen W, Thiery JP, Bellusci S. Identification of the mammary line in mouse by Wnt10b expression. Dev Dyn 2004;229(2):349–56.PubMedCrossRefGoogle Scholar
  20. 20.
    Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK, Cooper MK, Gaffield W, Westphal H, Beachy PA, Dlugosz AA. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 1999;205(1):1–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Mill P, Mo R, Fu H, Grachtchouk M, Kim PC, Dlugosz AA, Hui CC. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 2003;17(2):282–94.PubMedCrossRefGoogle Scholar
  22. 22.
    St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, McMahon JA, Lewis PM, Paus R, McMahon AP. Sonic hedgehog signaling is essential for hair development. Curr Biol 1998;8(19):1058–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Gallego MI, Beachy PA, Hennighausen L, Robinson GW. Differential requirements for shh in mammary tissue and hair follicle morphogenesis. Dev Biol 2002;249(1):131–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Michno K, Boras-Granic K, Mill P, Hui CC, Hamel PA. Shh expression is required for embryonic hair follicle but not mammary gland development. Dev Biol 2003;264(1):153–65.PubMedCrossRefGoogle Scholar
  25. 25.
    Hatsell SJ, Cowin P. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development 2006;133(18):3661–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Gritli-Linde A, Hallberg K, Harfe BD, Reyahi A, Kannius-Janson M, Nilsson J, Cobourne MT, Sharpe PT, McMahon AP, Linde A. Abnormal hair development and apparent follicular transformation to mammary gland in the absence of hedgehog signaling. Dev Cell 2007;12(1):99–112.PubMedCrossRefGoogle Scholar
  27. 27.
    Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Hui C, Daniel CW. The Gli2 transcription factor is required for normal mouse mammary gland development. Dev Biol 2001;238(1):133–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Veltmaat JM, Relaix F, Le LT, Kratochwil K, Sala FG, van Veelen W, Rice R, Spencer-Dene B, Mailleux AA, Rice DP, Thiery JP, Bellusci S. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 2006;133(12):2325–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Lewis MT. Hedgehog signaling in mouse mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia 2001;6(1):53–66.PubMedCrossRefGoogle Scholar
  30. 30.
    Kouros-Mehr H, Werb Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 2006;235(12):3404–12.PubMedCrossRefGoogle Scholar
  31. 31.
    Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Scott MP, Daniel CW. Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development 1999;126(22):5181–93.PubMedGoogle Scholar
  32. 32.
    Moraes RC, Zhang X, Harrington N, Fung JY, Wu MF, Hilsenbeck SG, Allred DC, Lewis MT. Constitutive activation of smoothened (Smo) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Development 2007;134(6):1231–42.Google Scholar
  33. 33.
    High A, Zedan W. Basal cell nevus syndrome. Curr Opin Oncol 2005;17(2):160–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Reifenberger J, Wolter M, Knobbe CB, Kohler B, Schonicke A, Scharwachter C, Kumar K, Blaschke B, Ruzicka T, Reifenberger G. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 2005;152(1):43–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D. Mutations in SUFU predispose to medulloblastoma. Nat Genet 2002;31(3):306–10.PubMedCrossRefGoogle Scholar
  36. 36.
    Rubin JB, Rowitch DH. Medulloblastoma: a problem of developmental biology. Cancer Cell 2002;2(1):7–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein EH, Jr., Scott MP. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 1997;276(5313):817–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Xie J, Johnson RL, Zhang X, Bare JW, Waldman FM, Cogen PH, Menon AG, Warren RS, Chen LC, Scott MP, Epstein EH, Jr. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 1997;57(12):2369–72.PubMedGoogle Scholar
  39. 39.
    Wicking C, Evans T, Henk B, Hayward N, Simms LA, Chenevix-Trench G, Pietsch T, Wainwright B. No evidence for the H133Y mutation in SONIC HEDGEHOG in a collection of common tumour types. Oncogene 1998;16(8):1091–3.PubMedCrossRefGoogle Scholar
  40. 40.
    Vorechovsky I, Benediktsson KP, Toftgard R. The patched/hedgehog/smoothened signalling pathway in human breast cancer: no evidence for H133Y SHH, PTCH and SMO mutations. Eur J Cancer 1999;35(5):711–3.PubMedCrossRefGoogle Scholar
  41. 41.
    Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE. The consensus coding sequences of human breast and colorectal cancers. Science 2006;314(5797):268–74.PubMedCrossRefGoogle Scholar
  42. 42.
    Naylor TL, Greshock J, Wang Y, Colligon T, Yu QC, Clemmer V, Zaks TZ, Weber BL. High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res 2005;7(6):R1186–98.PubMedCrossRefGoogle Scholar
  43. 43.
    Chang-Claude J, Dunning A, Schnitzbauer U, Galmbacher P, Tee L, Wjst M, Chalmers J, Zemzoum I, Harbeck N, Pharoah PD, Hahn H. The patched polymorphism Pro1315Leu (C3944T) may modulate the association between use of oral contraceptives and breast cancer risk. Int J Cancer 2003;103(6):779–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Wolf I, Bose S, Desmond JC, Lin BT, Williamson EA, Karlan BY, Koeffler HP. Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer. Breast Cancer Res Treat 2007;in press.Google Scholar
  45. 45.
    Huang S, He J, Zhang X, Bian Y, Yang L, Xie G, Zhang K, Tang W, Stelter AA, Wang Q, Zhang H, Xie J. Activation of the hedgehog pathway in human hepatocellular carcinomas. Carcinogenesis 2006;27(7):1334–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Chi S, Huang S, Li C, Zhang X, He N, Bhutani MS, Jones D, Castro CY, Logrono R, Haque A, Zwischenberger J, Tyring SK, Zhang H, Xie J. Activation of the hedgehog pathway in a subset of lung cancers. Cancer Lett 2006;244(1):53–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen X, Horiuchi A, Kikuchi N, Osada R, Yoshida J, Shiozawa T, Konishi I. Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation: it’s inhibition leads to growth suppression and apoptosis. Cancer Sci 2007;98(1):68–76PubMedCrossRefGoogle Scholar
  48. 48.
    Ma X, Sheng T, Zhang Y, Zhang X, He J, Huang S, Chen K, Sultz J, Adegboyega PA, Zhang H, Xie J. Hedgehog signaling is activated in subsets of esophageal cancers. Int J Cancer 2006;118 (1):139–48.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang LH, Choi YL, Hua XY, Shin YK, Song YJ, Youn SJ, Yun HY, Park SM, Kim WJ, Kim HJ, Choi JS, Kim SH. Increased expression of sonic hedgehog and altered methylation of its promoter region in gastric cancer and its related lesions. Mod Pathol 2006;19(5):675–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Karhadkar SS, Bova SG, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004;431(7009):707–12.PubMedCrossRefGoogle Scholar
  51. 51.
    Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, Kuroki S, Katano M. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 2004;64(17):6071–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Mukherjee S, Frolova N, Sadlonova A, Novak Z, Steg A, Page GP, Welch DR, Lobo-Ruppert SM, Ruppert JM, Johnson MR, Frost AR. Hedgehog signaling and response to cyclopamine differs in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol Ther 2006;5(6):674–83.PubMedCrossRefGoogle Scholar
  53. 53.
    Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Fernandez-del Castillo C, Yajnik V, Antoniu B, McMahon M, Warshaw AL, Hebrok M. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003;425(6960):851–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003;422 (6929):313–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Sims-Mourtada J, Izzo JG, Apisarnthanarax S, Wu TT, Malhotra U, Luthra R, Liao Z, Komaki R, van der Kogel A, Ajani J, Chao KS. Hedgehog: an attribute to tumor regrowth after chemoradiotherapy and a target to improve radiation response. Clin Cancer Res 2006;12(21):6565–72.PubMedCrossRefGoogle Scholar
  56. 56.
    Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, Beyna M, Datta MW, Datta S, Ruiz i Altaba A. Inhibition of prostate cancer proliferation by interference with Sonic Hedgehog-GLI1 signaling. Proc Natl Acad Sci USA 2004;101(34):12561–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Patil MA, Zhang J, Ho C, Cheung ST, Fan ST, Chen X. Hedgehog signaling in human hepatocellular carcinoma. Cancer Biol Ther 2006;5(1):111–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Nakashima H, Nakamura M, Yamaguchi H, Yamanaka N, Akiyoshi T, Koga K, Yamaguchi K, Tsuneyoshi M, Tanaka M, Katano M. Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer. Cancer Res 2006;66(14):7041–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Sheng T, Li C, Zhang X, Chi S, He N, Chen K, McCormick F, Gatalica Z, Xie J. Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer 2004;3:29.PubMedCrossRefGoogle Scholar
  60. 60.
    Martin ST, Sato N, Dhara S, Chang R, Hustinx SR, Abe T, Maitra A, Goggins M. Aberrant methylation of the human Hedgehog interacting protein (HHIP) gene in pancreatic neoplasms. Cancer Biol Ther 2005;4(7):728–733.PubMedCrossRefGoogle Scholar
  61. 61.
    Hu Z, Bonifas JM, Aragon G, Kopelovich L, Liang Y, Ohta S, Israel MA, Bickers DR, Aszterbaum M, Epstein EH, Jr. Evidence for lack of enhanced hedgehog target gene expression in common extracutaneous tumors. Cancer Res 2003;63(5):923–8.PubMedGoogle Scholar
  62. 62.
    Goodrich LV, Milenkovic L, Higgins KM, Scott MP. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997;277(5329):1109–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 1998;4(5):619–22.PubMedCrossRefGoogle Scholar
  64. 64.
    Aszterbaum M, Epstein J, Oro A, Douglas V, LeBoit PE, Scott MP, Epstein EH, Jr. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 1999;5(11):1285–91.PubMedCrossRefGoogle Scholar
  65. 65.
    Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, McMahon AP. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 2006;66(20):10171–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Hulit J, Lee RJ, Li Z, Wang C, Katiyar S, Yang J, Quong AA, Wu K, Albanese C, Russell R, Di Vizio D, Koff A, Thummala S, Zhang H, Harrell J, Sun H, Muller WJ, Inghirami G, Lisanti MP, Pestell RG. p27Kip1 repression of ErbB2-induced mammary tumor growth in transgenic mice involves Skp2 and Wnt/{beta}-catenin signaling. Cancer Res 2006;66(17):8529–41.PubMedCrossRefGoogle Scholar
  67. 67.
    Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA. Effects of oncogenic mutations in smoothened and patched can be reversed by cyclopamine. Nature 2000;406(6799):1005–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 2002;16(21):2743–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, Beachy PA. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003;425(6960):846–51.PubMedCrossRefGoogle Scholar
  70. 70.
    Chen BY, Lin DP, Liu JY, Chang H, Huang PH, Chen YL, Chang HH. A mouse prostate cancer model induced by Hedgehog overexpression. J Biomed Sci 2006;13(3):373–84.PubMedCrossRefGoogle Scholar
  71. 71.
    Mimeault M, Moore E, Moniaux N, Henichart JP, Depreux P, Lin MF, Batra SK. Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int J Cancer 2006;118(4):1022–31.PubMedCrossRefGoogle Scholar
  72. 72.
    Regl G, Kasper M, Schnidar H, Eichberger T, Neill GW, Philpott MP, Esterbauer H, Hauser-Kronberger C, Frischauf AM, Aberger F. Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 2004;64(21):7724–31.PubMedCrossRefGoogle Scholar
  73. 73.
    Athar M, Li C, Tang X, Chi S, Zhang X, Kim AL, Tyring SK, Kopelovich L, Hebert J, Epstein EH, Jr., Bickers DR, Xie J. Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res 2004;64(20):7545–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005;17(5):548–58.PubMedCrossRefGoogle Scholar
  75. 75.
    Li X, Deng W, Nail CD, Lobo-Ruppert SM, Ruppert JM. Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 2007;26(31):4489–98.Google Scholar
  76. 76.
    Li X, Deng W, Nail CD, Bailey SK, Kraus MH, Ruppert JM, Lobo-Ruppert SM. Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 2006;25(4):609–21.PubMedGoogle Scholar
  77. 77.
    Ma X, Chen K, Huang S, Zhang X, Adegboyega PA, Evers BM, Zhang H, Xie J. Frequent activation of the hedgehog pathway in advanced gastric adenocarcinomas. Carcinogenesis 2005;26 (10):1698–705.PubMedCrossRefGoogle Scholar
  78. 78.
    Fan L, Pepicelli CV, Dibble CC, Catbagan W, Zarycki JL, Laciak R, Gipp J, Shaw A, Lamm ML, Munoz A, Lipinski R, Thrasher JB, Bushman W. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 2004;145(8):3961–70.PubMedCrossRefGoogle Scholar
  79. 79.
    Lee SW, Moskowitz MA, Sims JR. Sonic hedgehog inversely regulates the expression of angiopoietin-1 and angiopoietin-2 in fibroblasts. Int J Mol Med 2007;19(3):445–51.PubMedGoogle Scholar
  80. 80.
    Asai J, Takenaka H, Kusano KF, Ii M, Luedemann C, Curry C, Eaton E, Iwakura A, Tsutsumi Y, Hamada H, Kishimoto S, Thorne T, Kishore R, Losordo DW. Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 2006;113(20):2413–24.PubMedCrossRefGoogle Scholar
  81. 81.
    Sterling JA, Oyajobi BO, Grubbs B, Padalecki SS, Munoz SA, Gupta A, Story B, Zhao M, Mundy GR. The hedgehog signaling molecule Gli2 induces parathyroid hormone-related peptide expression and osteolysis in metastatic human breast cancer cells. Cancer Res 2006;66(15):7548–53.PubMedCrossRefGoogle Scholar
  82. 82.
    Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 2005;7(3):86–95.PubMedCrossRefGoogle Scholar
  83. 83.
    Lewis MT, Visbal AP. The hedgehog signaling network, mammary stem cells, and breast cancer: connections and controversies. Ernst Schering Found Workshop Proc 2007;in press.Google Scholar
  84. 84.
    Miller SJ, Lavker RM, Sun TT. Interpreting epithelial cancer biology in the context of stem cells: tumor properties and therapeutic implications. Biochim Biophys Acta 2005;1756(1):25–52.PubMedGoogle Scholar
  85. 85.
    Zhou JX, Jia LW, Liu WM, Miao CL, Liu S, Cao YJ, Duan EK. Role of sonic hedgehog in maintaining a pool of proliferating stem cells in the human fetal epidermis. Hum Reprod 2006;21(7):1698–704.PubMedCrossRefGoogle Scholar
  86. 86.
    Palma V, Ruiz i Altaba A. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 2004;131(2):337–45.PubMedCrossRefGoogle Scholar
  87. 87.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM. Identification of pancreatic cancer stem cells. Cancer Res 2007;67(3):1030–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i, Altaba A. Hedgehog - Gli1 signaling regulates human glioma growth, cancer stem cell self-renewal and tumorgenicity. Curr Biol 2007;17(2):165–72.PubMedCrossRefGoogle Scholar
  89. 89.
    Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006;66(12):6063–71.PubMedCrossRefGoogle Scholar
  90. 90.
    Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, Chen JK, Cooper MK, Taipale J, Olson JM, Beachy PA. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 2002;297(5586):1559–61.PubMedCrossRefGoogle Scholar
  91. 91.
    Williams JA, Guicherit OM, Zaharian BI, Xu Y, Chai L, Wichterle H, Kon C, Gatchalian C, Porter JA, Rubin LL, Wang FY. Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 2003;100(8):4616–21.PubMedCrossRefGoogle Scholar
  92. 92.
    Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP. Repression of smoothened by patched-dependent (Pro-)vitamin D3 secretion. PLoS Biol 2006;4(8):e232.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Cell BiologyNew York University School of MedicineNew YorkUSA
  2. 2.Department of PathologyUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Wallace Tumor InstituteUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations