Organotropism of Breast Cancer Metastasis

  • Xin Lu
  • Yibin Kang


Breast cancer causes mortality by metastasizing to a variety of vital organs, such as bone, lung, brain and liver. Effective therapeutic intervention of this deadly process relies on a better mechanistic understanding of metastasis organotropism. Recent studies have confirmed earlier speculations that metastasis is a non-random process and is dependent on intricate tumor-stroma interactions at the target organ. Both the intrinsic properties of breast cancer cells and the host organ microenvironment are important in determining the efficiency of organ-specific metastasis. Advances in animal modeling, in vivo imaging and functional genomics have accelerated the discovery of important molecular mediators of organ-specific metastasis. A conceptual framework of breast cancer organotropism is emerging and will be instrumental in guiding future efforts in this exciting research field.


Breast cancer Metastasis Organotropism Tissue-specific metastasis Bone metastasis Lung metastasis Cancer stem cell Metastasis niche 



a disintegrin and metalloproteinase with thrombospondin type 1 motif1


blood brain barrier


bone morphogenetic protein


bone sialoprotein


cathepsin K


cancer stem cell


connective tissue growth factor


CXC motif chemokine receptor 4


extracellular matrix


fibroblast growth factor


granulocyte macrophage colony stimulating factor


insulin-like growth factor




Jun N-terminal kinase


mammary epithelial cell


macrophage colony-stimulating factor


matrix metalloproteinase


nuclear factor kappa B






platelet-derived growth factor


placental growth factor


pre-metastasis niche


parathyroid hormone-related protein


receptor activator of NFκB


receptor activator of NFκB ligand


stromal derived factor 1


transforming growth factor beta


tumor necrosis factor alpha


tartrate-resistant acid phosphatase


vascular cell adhesion molecule


vascular endothelial growth factor



We thank members of our laboratory for the critical reading of this manuscript and apologize to those colleagues whose important work may not be cited directly and discussed here owing to space limitations. Research in our laboratory is supported by the American Cancer Society (RSG MGO-110765), Department of Defense (BC051647), Susan G. Komen Foundation (BCTR0503765), and the NJ Commission on Cancer Research (05-2408-CCR-E0).


  1. 1.
    Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin 2005;55 1:10–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2 8:563–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006;127 4:679–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006;12 8:895–904.PubMedCrossRefGoogle Scholar
  5. 5.
    Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, et al. Metastatic patterns in adenocarcinoma. Cancer 2006;106 7:1624–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee Y-T. Breast carcinoma: Pattern of metastasis at autopsy. J Surg Oncol 1983;23 3:175–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS. Breast cancer metastasis to the central nervous system. Am J Pathol 2005;167 4:913–20.PubMedGoogle Scholar
  8. 8.
    Fidler IJ. Selection of successive tumour lines for metastasis. Nat New Biol 1973;242 118:148–9.PubMedGoogle Scholar
  9. 9.
    Kang Y. Functional genomic analysis of cancer metastasis: biologic insights and clinical implications. Expert Rev Mol Diagn 2005;5 3:385–95.PubMedCrossRefGoogle Scholar
  10. 10.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003;3 6:537–49.PubMedCrossRefGoogle Scholar
  11. 11.
    Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005;436 7050:518–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005;115 1:44–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Paget S. Distribution of secondary growths in cancer of the breast. Lancet 1889;1:571–3.CrossRefGoogle Scholar
  14. 14.
    Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003;3 6:453–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Welch DR. Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 1997;15 3:272–306.PubMedCrossRefGoogle Scholar
  16. 16.
    Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 2005;102 39:13909–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002;2 8:584–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 2003;423 6937:349–55.PubMedCrossRefGoogle Scholar
  19. 19.
    Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423 6937:337–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Siclari VA, Guise TA, Chirgwin JM. Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. Cancer Metastasis Rev 2006;25 4:621–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Roodman GD. Mechanisms of bone metastasis. N Engl J Med 2004;350 16:1655–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Pantschenko AG, Pushkar I, Anderson KH, Wang Y, Miller LJ, Kurtzman SH, et al. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 2003;23 2:269–84.PubMedGoogle Scholar
  23. 23.
    Bendre MS, Gaddy-Kurten D, Mon-Foote T, Akel NS, Skinner RA, Nicholas RW, et al. Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res 2002;62 19:5571–9.PubMedGoogle Scholar
  24. 24.
    Park BK, Zhang H, Zeng Q, Dai J, Keller ET, Giordano T, et al. NF-[kappa]B in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 2007;13 1:62–9PubMedCrossRefGoogle Scholar
  25. 25.
    Ohshiba T, Miyaura C, Ito A. Role of prostaglandin E produced by osteoblasts in osteolysis due to bone metastasis. Biochem Biophys Res Commun 2003;300 4:957–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Gupta GP, Massague J. Cancer Metastasis: Building a Framework. Cell 2006;127 4:679–95.PubMedCrossRefGoogle Scholar
  27. 27.
    Kovacs CS. Calcium and Bone Metabolism During Pregnancy and Lactation. J Mammary Gland Biol Neoplasia 2005;10 2:105–18.PubMedCrossRefGoogle Scholar
  28. 28.
    VanHouten JN, Dann P, Stewart AF, Watson CJ, Pollak M, Karaplis AC, et al. Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation. J Clin Invest 2003;112 9:1429–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000;103 1:41–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 2001;107 6:763–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006;440 7084:692–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Shore P. A role for Runx2 in normal mammary gland and breast cancer bone metastasis. J Cell Biochem 2005;96 3:484–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, et al. Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 2003;63 10:2631–7.PubMedGoogle Scholar
  34. 34.
    Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 2005;25 19:8581–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB, et al. Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res 2004;64 13:4506–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Bellahcene A, Bachelier R, Detry C, Lidereau R, Clezardin P, Castronovo V. Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 2007;101 2:135–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410 6824:50–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Brown DM, Ruoslahti E. Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell 2004;5 4:365–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Abdel-Ghany M, Cheng H-C, Elble RC, Pauli BU. The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem 2001;276 27:25438–46.PubMedCrossRefGoogle Scholar
  40. 40.
    Cheng H-C, Abdel-Ghany M, Elble RC, Pauli BU. Lung endothelial ipeptidyl peptidaseD IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J Biol Chem 1998;273 37:24207–15.PubMedCrossRefGoogle Scholar
  41. 41.
    Jiang WG, Matsumoto K, Nakamura T, ebrary Inc. Growth factors and their receptors in cancer metastasis. Dordrecht: Kluwer; 2001.Google Scholar
  42. 42.
    Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, et al. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002;109 12:1551–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 2003;100 14:8430–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Kang Y. Pro-metastasis function of TGF beta mediated by the smad pathway. J Cell Biochem 2006;98 6:1380–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Yingling JM, Blanchard KL, Sawyer JS. Development of TGFb signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004;3 12:1011–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Sierra A, Price JE, Garcia-Ramirez M, Mendez O, Lopez L, Fabra A. Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab Invest 1997;77 4:357–68.PubMedGoogle Scholar
  47. 47.
    Kim LS, Huang S, Lu W, Lev DC, Price JE. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 2004;21 2:107–18.CrossRefGoogle Scholar
  48. 48.
    Stessels F, Van den Eynden G, Van der Auwera I, Salgado R, Van den Heuvel E, Harris AL, et al. Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 2004;90 7:1429–36.PubMedCrossRefGoogle Scholar
  49. 49.
    O’Reilly SM, Richards MA, Rubens RD. Liver metastases from breast cancer: the relationship between clinical, biochemical and pathological features and survival. Eur J Cancer 1990;26 5:574–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 2001;16 8:1486–95.PubMedCrossRefGoogle Scholar
  51. 51.
    Price JE. Metastasis from human breast cancer cell lines. Breast Cancer Res Treat 1996;39 1:93–102.PubMedCrossRefGoogle Scholar
  52. 52.
    Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992;52 6:1399–405.PubMedGoogle Scholar
  53. 53.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. From the cover: prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100 7:3983–88.PubMedCrossRefGoogle Scholar
  54. 54.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63 18:5821–28.PubMedGoogle Scholar
  55. 55.
    Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003;100 25:15178–83.PubMedCrossRefGoogle Scholar
  56. 56.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature 2004;432 7015:396–401.PubMedCrossRefGoogle Scholar
  57. 57.
    O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445 7123:106–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Polyak K, Hahn WC. Roots and stems: stem cells in cancer. 2006;12 3:296–300.Google Scholar
  59. 59.
    Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006;355 12:1253–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 2007;17 1:3–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature 2006;439 7072:84–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Talmadge JE, Wolman SR, Fidler IJ. Evidence for the clonal origin of spontaneous metastases. Science 1982;217 4557:361–3.PubMedCrossRefGoogle Scholar
  63. 63.
    Fidler IJ, Talmadge JE. Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Res 1986;46 10:5167–71.PubMedGoogle Scholar
  64. 64.
    Weigelt B, Peterse JL, van’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer 2005;5 8:591–602.PubMedCrossRefGoogle Scholar
  65. 65.
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438 7069:820–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res 2006;66 23:11089–93.PubMedCrossRefGoogle Scholar
  67. 67.
    Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425 6960:841–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003;425 6960:836–41.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA
  2. 2.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations