Preclinical Imaging of Mammary Intraepithelial Neoplasia with Positron Emission Tomography

  • Craig K. Abbey
  • Alexander D. Borowsky
  • Jeffery P. Gregg
  • Robert D. Cardiff
  • Simon R. Cherry
Article

Abstract

Small-animal imaging with positron emission tomography (PET) has become a valuable tool for evaluating preclinical models of breast cancer and other diseases. In this review, we examine a number of issues related to preclinical imaging studies with PET, using transgenic models of ductal carcinoma in situ and metastasis as specific examples. We discuss imaging components such as reconstruction, normalization, and extraction of quantitative parameters. We also analyze the effect of longitudinal correlations on cohort size and present some simple statistical techniques for determining cohort sizes that may be helpful in designing preclinical imaging studies. We describe studies that are greatly facilitated by access to non-invasive imaging data including a study involving multiple endpoints and another investigating metastasis. We conclude with a brief survey of emerging approaches in small-animal PET imaging.

Keywords

Positron emission tomography Preclinical imaging Mammary intraepithelial neoplasia Therapeutic response 

Abbreviations

FBP

filtered backprojection

FDG

[18F]2-fluoro-2-deoxy-d-glucose

MAP

maximum a posteriori

MIN-O

mammary intraepithelial neoplasia-outgrowth

MIP

maximum intensity projection

PET

positron emission tomography

PyVmT

Polyoma Virus middle-T

ROI

region of interest

References

  1. 1.
    Burstein HJ, Polyak K, Wong JS, Lester SC, Kaelin CM. Ductal carcinoma in situ of the breast. N Engl J Med 2004;350(14):1430–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004;6(1):17–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003;100(10):5974–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Kavanaugh CJ, Desai KV, Calvo A, Brown PH, Couldrey C, Lubet R, et al. Pre-clinical applications of transgenic mouse mammary cancer models. Transgenic Research 2002;11:617–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Cardiff RD, Moghanaki D, Jensen RA. Genetically engineered mouse models of mammary intraepithelial neoplasia. J Mammary Gland Biol Neoplasia 2000;5(4):421–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL. Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 1996;37:1042–7.PubMedGoogle Scholar
  7. 7.
    Ingvar M, Eriksson L, Rogers GA, Stone-Elander S, Widén L. Rapid feasibility studies of tracers for positron emission tomography: high-resolution PET in small animals with kinetic analysis. J Cereb Blood Flow Metab 1991;11:926–31.PubMedGoogle Scholar
  8. 8.
    Marriott CJ, Cadorette JE, Lecomte R, Scasnar V, Rousseau J, van Lier JE. High-resolution PET imaging and quantitation of pharmaceutical biodistributions in a small animal using avalanche photodiode detectors. J Nucl Med 1994;35:1390–6.PubMedGoogle Scholar
  9. 9.
    Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 1997;44:1161–6.CrossRefGoogle Scholar
  10. 10.
    Jones T. The imaging science of positron emission tomography. Eur J Nucl Med 1996;23:807–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 2000; 97:9226–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Tai YC, Laforest R. Instrumentation aspects of animal PET. Annu Rev Biomed Eng 2005;7:255–85.PubMedCrossRefGoogle Scholar
  13. 13.
    Phelps ME, Mazziotta J, Schelbert HR, editors. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven; 1986.Google Scholar
  14. 14.
    Wahl RL, editor. Principles and practice of positron emission tomography. Baltimore, Maryland: Williams & Wilkins; 2002.Google Scholar
  15. 15.
    Bailey DL, Townsend DW, Valk PE, Maisey MN, editors. Positron emission tomography: basic sciences. Berlin Heidelberg New York: Springer; 2005.Google Scholar
  16. 16.
    Chatziioannou AF. Instrumentation for molecular imaging in preclinical research: micro-PET and micro-SPECT. Proc Am Thorac Soc 2005;2(6):533–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Yang DJ, Kim EE, Inoue T. Targeted molecular imaging in oncology. Ann Nucl Med 2006;20(1):1–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Seddon BM, Workman P. The role of functional and molecular imaging in cancer drug discovery and development. Br J Radiol 2003;76 (Spec no 2):S128–38.PubMedCrossRefGoogle Scholar
  19. 19.
    Czernin J, Weber WA, Herschman HR. Molecular imaging in the development of cancer therapeutics. Annu Rev Med 2006;57:99–118.PubMedCrossRefGoogle Scholar
  20. 20.
    Dilworth SM. Polyoma virus middle T antigen and its role in identifying cancer-related molecules. Nat Rev Cancer 2002;2(12):951–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992;12:954–61.PubMedGoogle Scholar
  22. 22.
    Qiu TH, Chandramouli GV, Hunter KW, Alkharouf NW, Green JE, Liu ET. Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human disease. Cancer Res 2004;64(17):5973–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Maglione JE, McGoldrick ET, Young LJ, Namba R, Gregg JP, Liu L, et al. Polyomavirus middle T-induced mammary intraepithelial neoplasia outgrowths: single origin, divergent evolution, and multiple outcomes. Mol Cancer Ther 2004;3(8):941–53.PubMedGoogle Scholar
  24. 24.
    Kinahan PE, Rogers JG. Analytic three-dimensional image reconstruction using all detected events. IEEE Trans Nucl Sci 1990;36:964–8.CrossRefGoogle Scholar
  25. 25.
    Lewitt RM, Muehllehner G, Karp JS. Three-dimensional reconstruction for PET by multi-slice rebinning and axial image filtering. Phys Med Biol 1994;39:321–40.CrossRefGoogle Scholar
  26. 26.
    Xu XL, Liow JS, Strother SC. Iterative algebraic reconstruction algorithms for emission computed tomography: a unified framework and its application to positron emission tomography. Med Phys 1993;20(6):1675–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. High resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol 1998;43:1001–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Chatziioannou A, Qi J, Moore A, Annala A, Nguyen K, Leahy RM, et al. Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imag 2000;19(5):507–12.CrossRefGoogle Scholar
  29. 29.
    Di Chiro G, Brooks RA. PET quantitation: blessing and curse. J Nucl Med 1988;29(9):1603–4.PubMedGoogle Scholar
  30. 30.
    Keyes JW, Jr. SUV: standard uptake or silly useless value? J Nucl Med 1995;36(10):1836–9.PubMedGoogle Scholar
  31. 31.
    Coleman RE. Is quantitation necessary for oncological PET studies. Eur J Nucl Med Mol Imaging 2002;29(1):133–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 1993;189(3):847–50.PubMedGoogle Scholar
  33. 33.
    Toyama H, Ichise M, Liow J-S, Vines DC, Seneca NM, Modell KJ, et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 2004;31:251–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Abbey CK, Borowsky AD, McGoldrick ET, Gregg JP, Maglione JE, Cardiff RD, et al. In vivo positron-emission tomography imaging of progression and transformation in a mouse model of mammary neoplasia. Proc Natl Acad Sci USA 2004;101 (31):11438–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Abbey CK, Borowsky AD, McGoldrick ET, Gregg JP, Cardiff RD, Cherry, SR. PET Imaging of development and malignant transformation in a mouse model of mammary intraepithelial neoplasia. In: Amini AA, Manduca A, editors. Medical imaging 2005: physiology, function, and structure from medical images, Proc SPIE 2005, vol. 5746, p. 1–9.Google Scholar
  36. 36.
    Diggle PJ, Heagerty P, Liang K-Y, Zeger SL. Analysis of longitudinal data. 2nd ed. Oxford: Oxford University Press; 2002.Google Scholar
  37. 37.
    Efron B, Tibshirani RJ. An introduction to the bootstrap. New York: Chapman & Hall; 1993.Google Scholar
  38. 38.
    Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004;4:335–48.PubMedCrossRefGoogle Scholar
  39. 39.
    Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 2000;19:6680–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Namba R, Young LJT, Abbey CK, Kim L, Damonte P, Borowsky AD, et al. Rapamycin inhibits growth of premalignant and malignant mammary lesions in a mouse model of DCIS. Clin Cancer Res 2006;12(8):2613–21.PubMedCrossRefGoogle Scholar
  41. 41.
    Namba R, Young LJ, Maglione JE, McGoldrick ET, Liu S, Wurz GT, et al. Selective estrogen receptor modulators inhibit growth and progression of premalignant lesions in a mouse model of ductal carcinoma in situ. Breast Cancer Res 2005;7(6):R881–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell 2002;108:135–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Borowsky AD, Namba R, Young LJ, Hunter KW, Hodgson JG, Tepper CG, et al. Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clin Exp Metastasis 2005;22(1):47–59.PubMedCrossRefGoogle Scholar
  44. 44.
    Cheung ATW, Young LJT, Chen PCY, Chao CY, Ndoye A, Barry PA, et al. Microcirculation and metastasis in a mouse mammary tumor model system. Int J Oncol 1997;129:507–16.Google Scholar
  45. 45.
    Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4(11):1334–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, et al. 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 2003;63(13):3791–8.PubMedGoogle Scholar
  47. 47.
    Waldherr C, Mellinghoff IK, Tran C, Halpern BS, Rozengurt N, Safaei A, et al. Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET. J Nucl Med 2005;46(1):114–20.PubMedGoogle Scholar
  48. 48.
    Kubota K, Tada M, Yamada S, Hori K, Saito S, Iwata R, et al. Comparison of the distribution of fluorine-18 fluoromisonidazole, deoxyglucose and methionine in tumour tissue. Eur J Nucl Med 1999;26(7):750–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Bentzen L, Keiding S, Horsman MR, Gronroos T, Hansen SB, Overgaard J. Assessment of hypoxia in experimental mice tumours by [18F]fluoromisonidazole PET and pO2 electrode measurements. Influence of tumour volume and carbogen breathing. Acta Oncol 2002;41(3):304–12.PubMedCrossRefGoogle Scholar
  50. 50.
    Wyss MT, Honer M, Schubiger PA, Ametamey SM. NanoPET imaging of [(18)F]fluoromisonidazole uptake in experimental mouse tumours. Eur J Nucl Med Mol Imaging 2006;33(3):311–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Lewis MR, Wang M, Axworthy DB, Theodore LJ, Mallet RW, Fritzberg AR, et al. In vivo evaluation of pretargeted 64Cu for tumor imaging and therapy. J Nucl Med 2003;44(8):1284–92.PubMedGoogle Scholar
  52. 52.
    Smith SV. Molecular imaging with copper-64. J Inorg Biochem 2004;98(11):1874–901.PubMedCrossRefGoogle Scholar
  53. 53.
    Townsend DW, Cherry SR. Combining anatomy and function: the path to true image fusion. Eur Radiol 2001;11:1968–74.PubMedCrossRefGoogle Scholar
  54. 54.
    Goertzen AL, Meadors AK, Silverman RW, Cherry SR. Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 2002;47(24):4315–28.PubMedCrossRefGoogle Scholar
  55. 55.
    Del Guerra A, Belcari N. Advances in animal PET scanners. Q J Nucl Med 2002;46(1):35–47.PubMedGoogle Scholar
  56. 56.
    Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, et al. Simultaneous PET and MR imaging. Phys Med Biol 1997;42(10):1965–70.PubMedCrossRefGoogle Scholar
  57. 57.
    Garlick PB, Marsden PK, Cave AC, Parkes HG, Slates R, Shao Y, et al. PET and NMR dual acquisition (PANDA): applications to isolated, perfused rat hearts. NMR Biomed 1997;10(3):138–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of a LSO-APD Detector in a 7 Tesla MRI Scanner for simultaneous PET-MR imaging. J Nucl Med 2006;47(4):639–47.PubMedGoogle Scholar
  59. 59.
    Schoder H, Erdi YE, Larson SM, Yeund HWD. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 2003;30:1419–37.PubMedCrossRefGoogle Scholar
  60. 60.
    Ell PJ. The contribution of PET/CT to improved patient management. Br J Radiol 2006;79(937):32–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Craig K. Abbey
    • 1
    • 2
  • Alexander D. Borowsky
    • 3
    • 4
  • Jeffery P. Gregg
    • 3
    • 4
  • Robert D. Cardiff
    • 3
    • 4
  • Simon R. Cherry
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Department of PsychologyUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Department of Pathology and Laboratory Medicine, School of MedicineUniversity of CaliforniaDavisUSA
  4. 4.Center for Comparative MedicineUniversity of CaliforniaDavisUSA

Personalised recommendations