Journal of Mammary Gland Biology and Neoplasia

, Volume 10, Issue 4, pp 299–310 | Cite as

The Role of Copper in Tumour Angiogenesis



Copper stimulates the proliferation and migration of endothelial cells and is required for the secretion of several angiogenic factors by tumour cells. Copper chelation decreases the secretion of many of these factors. Serum copper levels are upregulated in many human tumours and correlate with tumour burden and prognosis. Copper chelators reduce tumour growth and microvascular density in animal models. New orally active copper chelators have enabled clinical trials to be undertaken, and there are several studies ongoing. A unifying mechanism of action by which copper chelation inhibits endothelial cell proliferation and tumour secretion of angiogenic factors remains to be elucidated, but possible targets include copper-dependent enzymes, chaperones, and transporters.


Copper chelation Angiogenesis Tetrathiomolybdate Copper-dependent enzymes 



cytochrome c oxidase


fibroblast growth factor


hypoxia inducible factor 1


human umbilical vein endothelial cell


interleukin 1


interleukin 6


interleukin 8


lysyl oxidase


metal transcription factor 1


non small cell lung cancer


prolyl hydroxylase domains


superoxide dismutase 1


superoxide dismutase 2


semicarbazide-sensitive amine oxidase


transforming growth factor




vascular adhesion protein 1


vascular endothelial growth factor


  1. 1.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285(21):1182–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Brem S. Angiogenesis and cancer control: from concept to therapeutic trial. Cancer Control 1999;6(5):436–58.PubMedGoogle Scholar
  3. 3.
    Shan S, Robson ND, Cao Y, Qiao T, Li CY, Kontos CD, et al. Responses of vascular endothelial cells to angiogenic signaling are important for tumor cell survival. Faseb J 2004;18(2):326–8.PubMedGoogle Scholar
  4. 4.
    Manders P, Beex LV, Tjan-Heijnen VC, Geurts-Moespot J, van Tienoven TH, Foekens JA, et al. The prognostic value of vascular endothelial growth factor in 574 node-negative breast cancer patients who did not receive adjuvant systemic therapy. Br J Cancer 2002;87(7):772–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Berns EM, Klijn JG, Look MP, Grebenchtchikov N, Vossen R, Peters H, et al. Combined vascular endothelial growth factor and TP53 status predicts poor response to tamoxifen therapy in estrogen receptor-positive advanced breast cancer. Clin Cancer Res 2003;9(4):1253–8.PubMedGoogle Scholar
  6. 6.
    Manders P, Sweep FC, Tjan-Heijnen VC, Geurts-Moespot A, van Tienoven DT, Foekens JA, et al. Vascular endothelial growth factor independently predicts the efficacy of postoperative radiotherapy in node-negative breast cancer patients. Clin Cancer Res 2003;9(17):6363–70.PubMedGoogle Scholar
  7. 7.
    Manders P, Beex LV, Tjan-Heijnen VC, Span PN, Sweep CG. Vascular endothelial growth factor is associated with the efficacy of endocrine therapy in patients with advanced breast carcinoma. Cancer 2003;98(10):2125–32.PubMedCrossRefGoogle Scholar
  8. 8.
    De Paola F, Granato AM, Scarpi E, Monti F, Medri L, Bianchi S, et al. Vascular endothelial growth factor and prognosis in patients with node-negative breast cancer. Int J Cancer 2002;98(2):228–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Miller KD, Chap LI, Holmes FA, Cobleigh MA, Marcom PK, Fehrenbacher L, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 2005;23(4):792–9.PubMedCrossRefGoogle Scholar
  10. 10.
    First-line treatment with bevacizumab and paclitaxel prolongs progression-free survival in metastatic breast cancer. Clin Breast Cancer 2005;6:105–7.Google Scholar
  11. 11.
    Bingham MJ, Ong TJ, Summer KH, Middleton RB, McArdle HJ. Physiologic function of the Wilson disease gene product, ATP7B. Am J Clin Nutr 1998;67(5 Suppl):982S–7S.PubMedGoogle Scholar
  12. 12.
    McAuslan BR, Reilly W. Endothelial cell phagokinesis in response to specific metal ions. Exp Cell Res 1980;130(1):147–57.PubMedCrossRefGoogle Scholar
  13. 13.
    Hu GF. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem 1998;69(3):326–35.PubMedCrossRefGoogle Scholar
  14. 14.
    Parke A, Bhattacherjee P, Palmer RM, Lazarus NR. Characterization and quantification of copper sulfate-induced vascularization of the rabbit cornea. Am J Pathol 1988;130(1):173–8.PubMedGoogle Scholar
  15. 15.
    Matsubara T, Saura R, Hirohata K, Ziff M. Inhibition of human endothelial cell proliferation in vitro and neovascularization in vivo by d-penicillamine. J Clin Invest 1989;83(1):158–67.PubMedCrossRefGoogle Scholar
  16. 16.
    Ziche M, Jones J, Gullino PM. Role of prostaglandin E1 and copper in angiogenesis. J Natl Cancer Inst 1982;69(2):475–82.PubMedGoogle Scholar
  17. 17.
    Pan Q, Kleer CG, van Golen KL, Irani J, Bottema KM, Bias C, et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res 2002;62(17):4854–9.PubMedGoogle Scholar
  18. 18.
    Linder MC, Hazegh-Azam M. Copper biochemistry and molecular biology. Am J Clin Nutr 1996;63(5):797S–811S.PubMedGoogle Scholar
  19. 19.
    Apelgot S, Coppey J, Fromentin A, Guille E, Poupon MF, Roussel A. Altered distribution of copper (64Cu) in tumor-bearing mice and rats. Anticancer Res 1986;6(2):159–64.PubMedGoogle Scholar
  20. 20.
    Coates RJ, Weiss NS, Daling JR, Rettmer RL, Warnick GR. Cancer risk in relation to serum copper levels. Cancer Res 1989;49(15):4353–6.PubMedGoogle Scholar
  21. 21.
    Gupta SK, Shukla VK, Vaidya MP, Roy SK, Gupta S. Serum and tissue trace elements in colorectal cancer. J Surg Oncol 1993;52(3):172–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Gupta SK, Shukla VK, Vaidya MP, Roy SK, Gupta S. Serum trace elements and Cu/Zn ratio in breast cancer patients. J Surg Oncol 1991;46(3):178–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Kunapuli SP, Singh H, Singh P, Kumar A. Ceruloplasmin gene expression in human cancer cells. Life Sci 1987;40(23):2225–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Hough CD, Cho KR, Zonderman AB, Schwartz DR, Morin PJ. Coordinately up-regulated genes in ovarian cancer. Cancer Res 2001;61(10):3869–76.PubMedGoogle Scholar
  25. 25.
    Stassar MJ, Devitt G, Brosius M, Rinnab L, Prang J, Schradin T, et al. Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization. Br J Cancer 2001;85(9):1372–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Song B. Immunohistochemical demonstration of epidermal growth factor receptor and ceruloplasmin in thyroid diseases. Acta Pathol Jpn 1991;41(5):336–43.PubMedGoogle Scholar
  27. 27.
    Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 2003;100(18):10393–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Brem SS, Zagzag D, Tsanaclis AM, Gately S, Elkouby MP, Brien SE. Inhibition of angiogenesis and tumor growth in the brain. Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor. Am J Pathol 1990;137(5):1121–42.PubMedGoogle Scholar
  29. 29.
    Teknos TN, Islam M, Arenberg DA, Pan Q, Carskadon SL, Abarbanell AM, et al. The effect of tetrathiomolybdate on cytokine expression, angiogenesis, and tumor growth in squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 2005;131(3):204–11.PubMedCrossRefGoogle Scholar
  30. 30.
    Moriguchi M, Nakajima T, Kimura H, Watanabe T, Takashima H, Mitsumoto Y, et al. The copper chelator trientine has an antiangiogenic effect against hepatocellular carcinoma, possibly through inhibition of interleukin-8 production. Int J Cancer 2002;102(5):445–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Khan MK, Miller MW, Taylor J, Gill NK, Dick RD, van Golen K, et al. Radiotherapy and antiangiogenic TM in lung cancer. Neoplasia 2002;4(2):164–70.PubMedCrossRefGoogle Scholar
  32. 32.
    Pan Q, Bao LW, Kleer CG, Brewer GJ, Merajver SD. Antiangiogenic tetrathiomolybdate enhances the efficacy of doxorubicin against breast carcinoma. Mol Cancer Ther 2003;2(7):617–22.PubMedGoogle Scholar
  33. 33.
    Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, et al. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ Physiol 2002;282(5):H1821–7.PubMedGoogle Scholar
  34. 34.
    Bar-Or D, Thomas GW, Yukl RL, Rael LT, Shimonkevitz RP, Curtis CG, et al. Copper stimulates the synthesis and release of interleukin-8 in human endothelial cells: a possible early role in systemic inflammatory responses. Shock 2003;20(2):154–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Landriscina M, Bagala C, Mandinova A, Soldi R, Micucci I, Bellum S, et al. Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress. J Biol Chem 2001;276(27):25549–57.PubMedCrossRefGoogle Scholar
  36. 36.
    Patstone G, Maher P. Copper and calcium binding motifs in the extracellular domains of fibroblast growth factor receptors. J Biol Chem 1996;271(7):3343–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Soncin F, Guitton JD, Cartwright T, Badet J. Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells. Biochem Biophys Res Commun 1997;236(3):604–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Martin F, Linden T, Katschinski DM, Oehme F, Flamme I, Mukhopadhyay CK, et al. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 2005;105(12):4613–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Marikovsky M, Nevo N, Vadai E, Harris-Cerruti C. Cu/Zn superoxide dismutase plays a role in angiogenesis. Int J Cancer 2002;97(1):34–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Marikovsky M. Thiram inhibits angiogenesis and slows the development of experimental tumours in mice. Br J Cancer 2002;86(5):779–87.PubMedCrossRefGoogle Scholar
  41. 41.
    Koshida R, Ou J, Matsunaga T, Chilian WM, Oldham KT, Ackerman AW, et al. Angiostatin: a negative regulator of endothelial-dependent vasodilation. Circulation 2003;107(6): 803–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000;407(6802):390–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Oberley LW. Anticancer therapy by overexpression of superoxide dismutase. Antioxid Redox Signal 2001;3(3):461–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Er TK, Hou MF, Tsa EM, Lee JN, Tsai LY. Differential expression of manganese containing superoxide dismutase in patients with breast cancer in Taiwan. Ann Clin Lab Sci 2004;34(2):159–64.PubMedGoogle Scholar
  45. 45.
    Schiff R, Reddy P, Ahotupa M, Coronado-Heinsohn E, Grim M, Hilsenbeck SG, et al. Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo. J Natl Cancer Inst 2000;92(23):1926–34.PubMedCrossRefGoogle Scholar
  46. 46.
    Csiszar K. Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 2001;70:1–32.PubMedGoogle Scholar
  47. 47.
    Li W, Liu G, Chou IN, Kagan HM. Hydrogen peroxide-mediated, lysyl oxidase-dependent chemotaxis of vascular smooth muscle cells. J Cell Biochem 2000;78(4):550–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Molnar J, Fong KS, He QP, Hayashi K, Kim Y, Fong SF, et al. Structural and functional diversity of lysyl oxidase and the LOX-like proteins. Biochim Biophys Acta 2003;1647(1–2):220–4.PubMedGoogle Scholar
  49. 49.
    Kirschmann DA, Seftor EA, Fong SF, Nieva DR, Sullivan CM, Edwards EM, et al. A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res 2002;62(15):4478–83.PubMedGoogle Scholar
  50. 50.
    Kuivaniemi H, Korhonen RM, Vaheri A, Kivirikko KI. Deficient production of lysyl oxidase in cultures of malignantly transformed human cells. FEBS Lett 1986;195(1–2):261–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Woznick AR, Braddock AL, Dulai M, Seymour ML, Callahan RE, Welsh RJ, et al. Lysyl oxidase expression in bronchogenic carcinoma. Am J Surg 2005;189(3):297–301.PubMedCrossRefGoogle Scholar
  52. 52.
    Kaneda A, Wakazono K, Tsukamoto T, Watanabe N, Yagi Y, Tatematsu M, et al. Lysyl oxidase is a tumor suppressor gene inactivated by methylation and loss of heterozygosity in human gastric cancers. Cancer Res 2004;64(18):6410–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Sanchez-Alcazar JA, Khodjakov A, Schneider E. Anticancer drugs induce increased mitochondrial cytochrome c expression that precedes cell death. Cancer Res 2001;61(3):1038–44.PubMedGoogle Scholar
  54. 54.
    Suzuki C, Daigo Y, Kikuchi T, Katagiri T, Nakamura Y. Identification of COX17 as a therapeutic target for non-small cell lung cancer. Cancer Res 2003;63(21):7038–41.PubMedGoogle Scholar
  55. 55.
    Garpenstrand H, Bergqvist M, Brattstrom D, Larsson A, Oreland L, Hesselius P, et al. Serum semicarbazide-sensitive amine oxidase (SSAO) activity correlates with VEGF in non-small-cell lung cancer patients. Med Oncol 2004;21(3):241–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhu Z, Thiele DJ. Toxic metal-responsive gene transcription. Exs 1996;77:307–20.PubMedGoogle Scholar
  57. 57.
    Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. Embo J 1994;13(12):2870–5.PubMedGoogle Scholar
  58. 58.
    Mattie MD, Freedman JH. Copper-inducible transcription: regulation by metal- and oxidative stress-responsive pathways. Am J Physiol Cell Physiol 2004;286(2):C293–301.PubMedCrossRefGoogle Scholar
  59. 59.
    Dalton T, Palmiter RD, Andrews GK. Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acids Res 1994;22(23):5016–23.PubMedCrossRefGoogle Scholar
  60. 60.
    Labbe S, Zhu Z, Thiele DJ. Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 1997;272(25):15951–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Borghouts C, Scheckhuber CQ, Werner A, Osiewacz HD. Respiration, copper availability and SOD activity in P. anserina strains with different lifespan. Biogerontology 2002;3(3):143–53.PubMedCrossRefGoogle Scholar
  62. 62.
    Joshi A, Serpe M, Kosman DJ. Evidence for (Mac1p)2.DNA ternary complex formation in Mac1p-dependent transactivation at the CTR1 promoter. J Biol Chem 1999;274(1):218–26.PubMedCrossRefGoogle Scholar
  63. 63.
    Klomp AE, van de Sluis B, Klomp LW, Wijmenga C. The ubiquitously expressed MURR1 protein is absent in canine copper toxicosis. J Hepatol 2003;39(5):703–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Takahashi Y, Kako K, Kashiwabara S, Takehara A, Inada Y, Arai H, et al. Mammalian copper chaperone Cox17p has an essential role in activation of cytochrome C oxidase and embryonic development. Mol Cell Biol 2002;22(21):7614–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 2000;97(6):2886–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 2003;362(9389):1028–37.PubMedCrossRefGoogle Scholar
  67. 67.
    Mandinova A, Soldi R, Graziani I, Bagala C, Bellum S, Landriscina M, et al. S100A13 mediates the copper-dependent stress-induced release of IL-1α from both human U937 and murine NIH 3T3 cells. J Cell Sci 2003;116(Pt 13):2687–96.PubMedCrossRefGoogle Scholar
  68. 68.
    Brown DR. Copper and prion disease. Brain Res Bull 2001;55(2):165–173.PubMedCrossRefGoogle Scholar
  69. 69.
    Sigurdsson EM, Brown DR, Alim MA, Scholtzova H, Carp R, Meeker HC, et al. Copper chelation delays the onset of prion disease. J Biol Chem 2003;278(47):46199–202.PubMedCrossRefGoogle Scholar
  70. 70.
    Starke R, Drummond O, MacGregor I, Biggerstaff J, Gale R, Camilleri R, et al. The expression of prion protein by endothelial cells: a source of the plasma form of prion protein? Br J Haematol 2002;119(3):863–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Dales JP, Garcia S, Meunier-Carpentier S, Andrac-Meyer L, Haddad O, Lavaut MN, et al. Overexpression of hypoxia-inducible factor HIF-1α predicts early relapse in breast cancer: retrospective study in a series of 745 patients. Int J Cancer 2005;116(5):734–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 2001;107(3):241–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Galang CK, Garcia-Ramirez J, Solski PA, Westwick JK, Der CJ, Neznanov NN, et al. Oncogenic Neu/ErbB-2 increases ets, AP-1, and NF-kappaB-dependent gene expression, and inhibiting ets activation blocks Neu-mediated cellular transformation. J Biol Chem 1996;271(14):7992–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Pan Q, Bao LW, Merajver SD. Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NFkappaB signaling cascade. Mol Cancer Res 2003;1(10):701–6.PubMedGoogle Scholar
  75. 75.
    Nakayama K, Kanzaki A, Ogawa K, Miyazaki K, Neamati N, Takebayashi Y. Copper-transporting P-type adenosine triphosphatase (ATP7B) as a cisplatin based chemoresistance marker in ovarian carcinoma: comparative analysis with expression of MDR1, MRP1, MRP2, LRP and BCRP. Int J Cancer 2002;101(5):488–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Kanzaki A, Nakayama K, Miyashita H, Shirata S, Nitta Y, Oubu M, et al. Mutation analysis of copper-transporting P-type adenosine triphosphatase (ATP7B) in human solid carcinomas. Anticancer Res 2003;23(2C):1913–5.PubMedGoogle Scholar
  77. 77.
    Safaei R, Howell SB. Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit Rev Oncol Hematol 2005;53(1):13–23.PubMedCrossRefGoogle Scholar
  78. 78.
    Brewer GJ, Dick RD, Grover DK, LeClaire V, Tseng M, Wicha M, et al. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: phase I study. Clin Cancer Res 2000;6(1):1–10.PubMedGoogle Scholar
  79. 79.
    Brewer GJ. Copper lowering therapy with tetrathiomolybdate as an antiangiogenic strategy in cancer. Curr Cancer Drug Targets 2005;5(3):195–202.PubMedCrossRefGoogle Scholar
  80. 80.
    Brewer GJ. Copper control as an antiangiogenic anticancer therapy: lessons from treating Wilson's disease. Exp Biol Med (Maywood) 2001;226(7):665–73.Google Scholar
  81. 81.
    Redman BG, Esper P, Pan Q, Dunn RL, Hussain HK, Chenevert T, et al. Phase II trial of tetrathiomolybdate in patients with advanced kidney cancer. Clin Cancer Res 2003;9(5):1666–72.PubMedGoogle Scholar
  82. 82.
    Yoshiji H, Yoshii J, Kuriyama S, Ikenaka Y, Noguchi R, Yanase K, et al. Combination of copper-chelating agent, trientine, and methotrexate attenuates colorectal carcinoma development and angiogenesis in mice. Oncol Rep 2005;14(1):213–8.PubMedGoogle Scholar
  83. 83.
    Yoshii J, Yoshiji H, Kuriyama S, Ikenaka Y, Noguchi R, Okuda H, et al. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells. Int J Cancer 2001;94(6):768–73.PubMedCrossRefGoogle Scholar
  84. 84.
    Yoshida D, Ikeda Y, Nakazawa S. Suppression of tumor growth in experimental 9L gliosarcoma model by copper depletion. Neurol Med Chir (Tokyo) 1995;35(3):133–5.CrossRefGoogle Scholar
  85. 85.
    Brem S, Grossman SA, Carson KA, New P, Phuphanich S, Alavi JB, et al. Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro-oncol 2005;7(3):246–53.PubMedCrossRefGoogle Scholar
  86. 86.
    Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 2006;440:1222–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Cancer Research UK Medical Oncology UnitThe Churchill HospitalOxfordUK

Personalised recommendations