Survival of Mammary Stem Cells in Suspension Culture: Implications for Stem Cell Biology and Neoplasia

  • Gabriela Dontu
  • Max S. Wicha


There is increasing evidence that a variety of neoplasms including breast cancer may result from transformation of normal stem and progenitor cells. In the past, isolation and characterization of mammary stem cells has been limited by the lack of suitable culture systems able to maintain these cells in an undifferentiated state in vitro. We have recently described a culture system in which human mammary stem and progenitor cells are able to survive in suspension and produce spherical colonies composed of both stem and progenitor cells. Recent observation that adult stem cells from other tissues may also retain the capacity for growth under anchorage independent conditions suggests a common underlying mechanism. We propose that this mechanism involves the interaction between the canonical Wnt signal pathway and E-cadherin. The Wnt pathway has been implicated in normal stem cell self-renewal in vivo. Furthermore, there is evidence that deregulation of this pathway in the mammary gland and other organs may play a key role in carcinogenesis. Thus, the development of in vitro suspension culture systems not only provides an important new tool for the study of mammary cell biology, but also may have important implications for understanding key molecular pathways in both normal and neoplastic stem cells.

stem cells cancer stem cells breast cancer mammary gland development Wnt signaling self-renewal differentiation 

Abbreviations used


alpha smooth muscle actin


adenomatosis polyposis coli


breast cancer resistance protein


B-lymphoma MO-MLV insertion region 1


bone morhogenetic protein 4


epidermal growth factor


epithelial specific antigen


estrogen receptor


fluorescence-activated cell sorting


fluorescein isothyocyanate


basic fibroblast growth factor


leukemia inhibitory factor

Muc 1

mucin 1


matrix metalloproteinase 7


metastasis associated gene 3


Nuclear remodeling and deacetylation complex


progesterone receptor


phosphatase and tensin homolog


side population


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Weissman IL. Stem cells: Units of development, units of regeneration, and units in evolution. Cell 2000;100:157–68.PubMedGoogle Scholar
  2. (2).
    Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 1997;88:287–98.CrossRefPubMedGoogle Scholar
  3. (3).
    Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001;17:387–403.CrossRefPubMedGoogle Scholar
  4. (4).
    Daniel C, Young L, Medina D, DeOme K. The influence of mammogenic hormones on serially transplanted mouse mammary gland. Exp Gerontol 1971;6:95–101.CrossRefPubMedGoogle Scholar
  5. (5).
    Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development 1998;125:1921–30.PubMedGoogle Scholar
  6. (6).
    Smalley M, Ashworth A. Stem Cells and breast cancer: A field in transit. Nat Rev Cancer 2003;3:832–44.CrossRefPubMedGoogle Scholar
  7. (7).
    Dontu G, Al-Hajj M, Abdallah W, Clarke M, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Proliferat 2003;36:59–72.CrossRefGoogle Scholar
  8. (8).
    Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: Entity or function? Cell 2001;105:829–41.CrossRefPubMedGoogle Scholar
  9. (9).
    Reynolds B, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 1992;12:4565–74.PubMedGoogle Scholar
  10. (10).
    Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996;175:1–13.CrossRefPubMedGoogle Scholar
  11. (11).
    Morshead C, Reynolds B, Craig C, McBurney M, Staines W, Morassutti D, et al. Neural stem cells in the adult mammalian forebrain: A relatively quiescent subpopulation of subependymal cells. Neuron 1994;13:1071–82.CrossRefPubMedGoogle Scholar
  12. (12).
    Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci 2000;97:14720–5.CrossRefPubMedGoogle Scholar
  13. (13).
    Rietze RL, Valcanis H, Brooker GF, Thomas T, Voss AK, Bartlett PF. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 2001;412:736–9.CrossRefPubMedGoogle Scholar
  14. (14).
    Johansson C, Momma S, Clarke D, Risling M, Lendahl U, Frisen J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999;96:25–34.CrossRefPubMedGoogle Scholar
  15. (15).
    Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 1999;156:333–44.CrossRefPubMedGoogle Scholar
  16. (16).
    Kukekov VG, Laywell ED, Thomas LB, Steindler DA. A nestin-negative precursor cell from the adult mouse brain gives rise to neurons and glia. Glia 1997;21:399–407.CrossRefPubMedGoogle Scholar
  17. (17).
    Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, et al. Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol 2001;19:475–9.CrossRefPubMedGoogle Scholar
  18. (18).
    Zhu G, Mehler MF, Mabie PC, Kessler JA. Development changes in progenitor cell responsiveness to cytokines. J Neurosci Res 1999;56:131–45.CrossRefPubMedGoogle Scholar
  19. (19).
    Kawaguchi A, Miyata T, Sawamoto K, Takashita N, Murayama A, Akamatsu W, et al. Nestin-EGFP transgenic mice: Viusualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci 2001;17:259–73.CrossRefPubMedGoogle Scholar
  20. (20).
    Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: Transcriptional profiling of embryonic and adult stem cells. Science 2002;298:601–4.CrossRefPubMedGoogle Scholar
  21. (21).
    Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science 2002;298:597–600.CrossRefPubMedGoogle Scholar
  22. (22).
    Terskikh AV, Easterday MC, Li L, Hood L, Kornblum HI, Geschwind DH, et al. From hematopoiesis to neuropoiesis: Evidence of overlapping genetic programs. Proc Natl Acad Sci 2001;98:7934–9.CrossRefPubMedGoogle Scholar
  23. (23).
    Molofsky A, Pardal R, Iwashita T, Park I, Clarke M, Morrison S. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003;425:962–7.CrossRefPubMedGoogle Scholar
  24. (24).
    Kelly S, Bliss T, Shah A, Sun G, Ma M, Foo W, et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 2004;101:11839–44,.CrossRefPubMedGoogle Scholar
  25. (25).
    Burnstein R, Foltynie T, He X, Menon D, Svendsen C, Caldwell M. Differentiation and migration of long term expanded human neural progenitors in a partial lesion model of Parkinson’s disease. Int J Biochem Cell Biol 2004;36:702–3.CrossRefPubMedGoogle Scholar
  26. (26).
    McBride J, Behrstock S, Chen E, Jakel R, Siegel I, Svendsen C, et al. Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 2004;475:211–9.CrossRefPubMedGoogle Scholar
  27. (27).
    Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 2001;294:2186–9.CrossRefPubMedGoogle Scholar
  28. (28).
    Grandbarbe L, Bouissac J, Rand M, Hrabé de Angelis M, Artavanis-Tsakonas S, Mohier E. Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development 2003;130:1391–402.CrossRefPubMedGoogle Scholar
  29. (29).
    Shimazaki T, Shingo T, Weiss S. The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J Neurosci 2001;21:7642–53.PubMedGoogle Scholar
  30. (30).
    Dontu G, Abdallah W, Foley J, Jackson K, Clarke M, Kawamura M, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Gene Dev 2003;17:1253–70.CrossRefPubMedGoogle Scholar
  31. (31).
    Scheffle B, Horn MIB, Laywell E, Coomes D, Kukekov V, et al. Marrow-mindedness: A perspective on neuropoiesis. Trends Neurosci 1999;22:348–57.CrossRefPubMedGoogle Scholar
  32. (32).
    Dontu G, Jackson K, McNicholas E, Kawamura M, Abdallah W, Wicha M. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 2004;6:R605–15.PubMedGoogle Scholar
  33. (33).
    Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 2002;20:11–20.CrossRefPubMedGoogle Scholar
  34. (34).
    Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 tranporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002;99:507–12.CrossRefPubMedGoogle Scholar
  35. (35).
    Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002;245:42–56.CrossRefPubMedGoogle Scholar
  36. (36).
    Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 2001;67:93–109.CrossRefPubMedGoogle Scholar
  37. (37).
    Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 1998;63:201–13.CrossRefPubMedGoogle Scholar
  38. (38).
    Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray J, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. PNAS 2004;101:4966–71.PubMedGoogle Scholar
  39. (39).
    Toma J, Akhavan M, Fernandes K, Barnabe-Heider F, Sadikot A, Kaplan D, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001;3:778–84.PubMedGoogle Scholar
  40. (40).
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration. Cell 2003;114:763–76.PubMedGoogle Scholar
  41. (41).
    Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nature medicine 2003;9:1293–9.PubMedGoogle Scholar
  42. (42).
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105–11.CrossRefPubMedGoogle Scholar
  43. (43).
    Bonnet D, Dick JA. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730–7.PubMedGoogle Scholar
  44. (44).
    Warner J, Wang J, Hope K, Jin L, Dick J. Concepts of human leukemic development. Oncogene 2004;23:23.Google Scholar
  45. (45).
    Al-Hajj M, Wicha M, Benito-Hernandez A, Morrison S, Clarke M. Prospective identification of tumorigenic breast cancer cells. Proc Nat Acad Sci USA 2003;100:3983–8.PubMedGoogle Scholar
  46. (46).
    Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821–8.PubMedGoogle Scholar
  47. (47).
    Singh S, Hawkins C, Clarke I, Squire J, Bayani J, Hide T. Henkelman R., Cusimano M, Dirks, P. Identification of human brain tumour initiating cells. Nature 2004;432:396–401.CrossRefPubMedGoogle Scholar
  48. (48).
    Ignatova TN et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002;39:193–206.PubMedGoogle Scholar
  49. (49).
    Gabay L, Lowell S, Rubin L, Anderson D. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 2003;40:485–99.PubMedGoogle Scholar
  50. (50).
    Angst B, Marcozzi C, Magee A. The cadherin superfamily: Diversity in form and function. J Cell Sci 2001;114:629–41.PubMedGoogle Scholar
  51. (51).
    Vallorosi C, Day K, Zhao X, Rashid M, Rubin M, Johnson K, et al. Truncation of the beta-catenin binding domain of E-cadherin precedes epithelial apoptosis during prostate and mammary involution. J Biol Chem 2000;275:3328–34.PubMedGoogle Scholar
  52. (52).
    Meniel V, Clarke A. Wnt-Cadherin Connections in Normal and Neoplastic mammary Epithelium. J Mammary Gland Biol Neoplasia 2003;8:435–47.PubMedGoogle Scholar
  53. (53).
    Arias AM, Brown AMC, Brennan K. Wnt signalling: pathway or network? Curr Opin Gene Dev 1999;9:447–54.Google Scholar
  54. (54).
    Nusse R, Varmus HE. Wnt Genes. Cell 1992;69:1073–87.Google Scholar
  55. (55).
    Brennan K, Brown AMC. Wnt Proteins in Mammary Development and Cancer. J Mammary Gland Biol Neoplasia 2003;9:119–31.Google Scholar
  56. (56).
    Kielman M, Rindapaa M, Gaspar C, van Poppe LN, Breukel C, van Leeuwen S, et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Nat Gene 2002;32:594–605.Google Scholar
  57. (57).
    Yamashita Y, Jones DL, Fuller MT. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 2003;301:1547–50.PubMedGoogle Scholar
  58. (58).
    Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 2002;109:987–91.PubMedGoogle Scholar
  59. (59).
    Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol 2003;163:847–57.PubMedGoogle Scholar
  60. (60).
    Boussadia O, Kutsch S, Hierholzer A, Delmas V, Kemler R. E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev 2002;115:53–62.PubMedGoogle Scholar
  61. (61).
    Jamora C, DasGupta R, Kocieniewski P, Fuchs E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 2003;422:317–22.PubMedGoogle Scholar
  62. (62).
    Smith GH, Chepko G. Mammary epithelial stem cells. Microsc Res Tech 2001;52:190–203.CrossRefPubMedGoogle Scholar
  63. (63).
    Trosko JT. He role of stem cells and gap junctional intercellular communication in carcinogenesis. J Biochem Mol Biol 2003;36:43–8.PubMedGoogle Scholar
  64. (64).
    Fujita N, Jaye D, Kajita M, Geigerman C, Moreno C, Wade PA. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 2003;113:207–19.PubMedGoogle Scholar
  65. (65).
    Brown AMC. Wnt signaling in breast cancer: Have we come full circle? Breast Cancer Res 2001;3:351–5.PubMedGoogle Scholar
  66. (66).
    Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey S, et al. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Gene Dev 2000;14:650–4.PubMedGoogle Scholar
  67. (67).
    Uyttendaele H, Soriano JV, Montesano R, Kitajewski J. Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Dev Biol 1998;196:204–17.PubMedGoogle Scholar
  68. (68).
    Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev Cell 2001;1:467–75.PubMedGoogle Scholar
  69. (69).
    Michaelson J, Leder P. Beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene 2004;20:5093–9.Google Scholar
  70. (70).
    Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 2003;100:15853–8.PubMedGoogle Scholar
  71. (71).
    Taipale J, Beachy PA. The hedgehog and Wnt signalling pathways in cancer. Nature 2001;411:349–54.PubMedGoogle Scholar
  72. (72).
    Catriona HM, Jamieson C, Ailles L, Dylla S, Muijtjens M, Jones C, Zehnder J, et al. Granulocyte–Macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New Engl J Med 2004;351:657–67.PubMedGoogle Scholar
  73. (73).
    Reya T, Duncan A, Ailles L, Domen J, Scherer D, Willert K, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003;423:409–14.PubMedGoogle Scholar
  74. (74).
    Kuhnert F, Davis C, Wang H, Chu P, Lee M, Yuan J, et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci USA 2004;101:266–71.PubMedGoogle Scholar
  75. (75).
    Brittan M, Wright N. Gastrointestinal stem cells. J Pathol 2002;197:492–509.PubMedGoogle Scholar
  76. (76).
    Zhu A, Watt F. Beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 1999;126:126(10):2285–98, 1999.PubMedGoogle Scholar
  77. (77).
    Liu B, McDermott S, Khwaja S, Alexander C. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 2004;101:4158–63.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Internal Medicine, Hematology–Oncology, Comprehensive Cancer CenterUniversity of MichiganAnn Arbor
  2. 2.Ann Arbor

Personalised recommendations