Advertisement

The Mammary Gland “Side Population”: A Putative Stem/Progenitor Cell Marker?

  • Matthew J. Smalley
  • Robert B. Clarke
Article

Abstract

Hematopoietic Stem Cells have been isolated by their ability to pump out Hoechst 33342 dye and form a distinct population definable by flow cytometry—the Side Population (SP). The membrane pump Bcrp has been identified as the molecular determinant of the SP phenotype. An SP population with Bcrp activity has been defined in a number of tissues, including mouse mammary and human breast epithelium, and it has been proposed that the SP phenotype is a universal stem cell marker. Studies of mouse and human breast SP suggest that the population is undifferentiated but capable of differentiating into epithelial structures of both luminal and myoepithelial lineages both in vitro and in vivo. However, evidence that the SP is enriched for stem cells is, at the moment, only correlative, and there are potentially confounding technical issues. We still await formal proof that the SP contains a stem cell population.

side population BCRP stem cell mammary breast Hoechst 

Abbreviations used

3D

Three-Dimensional

ABC

Adenosine Binding Cassette

BCRP

Breast Cancer Resistance Protein

BrdU

Bromo-deoxy Uridine

CK

Cytokeratin

EGF

Epidermal Growth Factor

ER

estrogen Receptor

ES cells

Embryonic Stem cells

HSCs

Hematopoietic Stem Cells

MDR

Multi-drug Resistance

MMTV

Mouse Mammary Tumor Virus

QRTPCR

Quantitative Reverse Transcriptase-Polymerase Chain Reaction

SP

Side Population

TDLU

Terminal DuctalLobuloalveolar Unit

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996;183(4):1797–806.CrossRefPubMedGoogle Scholar
  2. (2).
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001;7(9):1028–34.CrossRefPubMedGoogle Scholar
  3. (3).
    Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci USA 2002;99(19):12339–44.CrossRefPubMedGoogle Scholar
  4. (4).
    Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997;3(12):1337–45.CrossRefPubMedGoogle Scholar
  5. (5).
    Hulspas R, Quesenberry PJ. Characterization of neurosphere cell phenotypes by flow cytometry. Cytometry 2000;40(3):245–50.CrossRefPubMedGoogle Scholar
  6. (6).
    Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998;95(26):15665–70.CrossRefPubMedGoogle Scholar
  7. (7).
    Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E, Lage H, Dietel M, Greenberger L, Cole SP, Doyle LA. A typical multidrug resistance: Breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 1999;91(5):429–33.CrossRefPubMedGoogle Scholar
  8. (8).
    Allen JD, Brinkhuis RF, Wijnholds J, Schinkel AH. The mouse Bcrp1/Mxr/Abcp gene: Amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res 1999;59(17):4237–41.PubMedGoogle Scholar
  9. (9).
    Komatani H, Kotani H, Hara Y, Nakagawa R, Matsumoto M, Arakawa H, Nishimura S. Identification of breast cancer resistant protein/mitoxantrone resistance/placenta-specific, ATP-binding cassette transporter as a transporter of NB-506 and J-107088, topoisomerase I inhibitors with an indolocarbazole structure. Cancer Res 2001;61(7):2827–32.PubMedGoogle Scholar
  10. (10).
    Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ, Plosch T, Kuipers F, Elferink RP, Rosing H, Beijnen JH, Schinkel AH. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 2002;99(24):15649–54.CrossRefPubMedGoogle Scholar
  11. (11).
    Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP, Schuetz JD. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 2004;279(23):24218–25.CrossRefPubMedGoogle Scholar
  12. (12).
    Mogi M, Yang J, Lambert JF, Colvin GA, Shiojima I, Skurk C, Summer R, Fine A, Quesenberry PJ, Walsh K. Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem 2003;278(40):39068–75.CrossRefPubMedGoogle Scholar
  13. (13).
    Ifergan I, Shafran A, Jansen G, Hooijberg JH, Scheffer GL, Assaraf YG. Folate deprivation results in the loss of breast cancer resistance protein (BCRP/ABCG2) expression. A role for BCRP in cellular folate homeostasis. J Biol Chem 2004;279(24):25527–34.CrossRefPubMedGoogle Scholar
  14. (14).
    Ee PL, Kamalakaran S, Tonetti D, He X, Ross DD, Beck WT. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Res 2004;64(4):1247–51.PubMedGoogle Scholar
  15. (15).
    Liu BY, McDermott SP, Khwaja SS, Alexander CM. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 2004;101(12):4158–63.CrossRefPubMedGoogle Scholar
  16. (16).
    Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002;245(1):42–56.CrossRefPubMedGoogle Scholar
  17. (17).
    Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco MM, Dale TC, Smalley MJ. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 2003;5(1):R1–8.CrossRefPubMedGoogle Scholar
  18. (18).
    Sonnenberg A, Daams H, Van der Valk MA, Hilkens J, Hilgers J. Development of mouse mammary gland: Identification of stages in differentiation of luminal and myoepithelial cells using monoclonal antibodies and polyvalent antiserum against keratin. J Histochem Cytochem 1986;34(8):1037–46.PubMedGoogle Scholar
  19. (19).
    Smalley M, Ashworth A. Stem cells and breast cancer: A field in transit. Nat Rev Cancer 2003;3(11):832–44.CrossRefPubMedGoogle Scholar
  20. (20).
    Edwards PA. Tissue reconstitution models of breast cancer. Cancer Surv 1993;16:79–96.PubMedGoogle Scholar
  21. (21).
    Smith GH. Experimental mammary epithelial morphogenesis in an in vivo model: Evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 1996;39(1):21–31.PubMedGoogle Scholar
  22. (22).
    Clarke RB, Anderson E, Howell A, Potten CS. Regulation of human breast epithelial stem cells. Cell Prolif 2003;36(Suppl 1):45–58.CrossRefGoogle Scholar
  23. (23).
    Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 2005;277(2):443–56.CrossRefPubMedGoogle Scholar
  24. (24).
    Clayton H, Titley I, Vivanco M. Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 2004;297(2):444–60.CrossRefPubMedGoogle Scholar
  25. (25).
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003;17(10):1253–70.CrossRefPubMedGoogle Scholar
  26. (26).
    Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 2004;101(14):4966–71.CrossRefPubMedGoogle Scholar
  27. (27).
    Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996;175(1):1–13.CrossRefPubMedGoogle Scholar
  28. (28).
    Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 1992;89(19):9064–8.PubMedGoogle Scholar
  29. (29).
    Clarke RB, Howell A, Potten CS, Anderson E. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 1997;57(22):4987–91.PubMedGoogle Scholar
  30. (30).
    Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC, Gallardo TD, Garry DJ. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 2004;265(1):262–75.CrossRefPubMedGoogle Scholar
  31. (31).
    Kim M, Morshead CM. Distinct populations of forebrain neural stem and progenitor cells can be isolated using side-population analysis. J Neurosci 2003;23(33):10703–9.PubMedGoogle Scholar
  32. (32).
    Murayama A, Matsuzaki Y, Kawaguchi A, Shimazaki T, Okano H. Flow cytometric analysis of neural stem cells in the developing and adult mouse brain. J Neurosci Res 2002;69(6):837–47.CrossRefPubMedGoogle Scholar
  33. (33).
    Storms RW, Goodell MA, Fisher A, Mulligan RC, Smith C. Hoechst dye efflux reveals a novel CD7(+)CD34(−) lymphoid progenitor in human umbilical cord blood. Blood 2000;96(6):2125–33.PubMedGoogle Scholar
  34. (34).
    Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107(11):1395–402.PubMedGoogle Scholar
  35. (35).
    Lechner A, Leech CA, Abraham EJ, Nolan AL, Habener JF. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun 2002;293(2):670–4.CrossRefPubMedGoogle Scholar
  36. (36).
    Oh H, Chi X, Bradfute SB, Mishina Y, Pocius J, Michael LH, Behringer RR, Schwartz RJ, Entman ML, Schneider MD. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann NY Acad Sci 2004;1015:182–9.CrossRefPubMedGoogle Scholar
  37. (37).
    Bhattacharya S, Jackson JD, Das AV, Thoreson WB, Kuszynski C, James J, Joshi S, Ahmad I. Direct identification and enrichment of retinal stem cells/progenitors by Hoechst dye efflux assay. Invest Ophthalmol Vis Sci 2003;44(6):2764–73.CrossRefPubMedGoogle Scholar
  38. (38).
    Shimano K, Satake M, Okaya A, Kitanaka J, Kitanaka N, Takemura M, Sakagami M, Terada N, Tsujimura T. Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. Am J Pathol 2003;163(1):3–9.PubMedGoogle Scholar
  39. (39).
    Wulf GG, Luo KL, Jackson KA, Brenner MK, Goodell MA. Cells of the hepatic side population contribute to liver regeneration and can be replenished with bone marrow stem cells. Haematologica 2003;88(4):368–78.PubMedGoogle Scholar
  40. (40).
    Giangreco A, Shen H, Reynolds SD, Stripp BR. Molecular phenotype of airway side population cells. Am J Physiol Lung Cell Mol Physiol 2004;286(4):L624–30.CrossRefPubMedGoogle Scholar
  41. (41).
    Falciatori I, Borsellino G, Haliassos N, Boitani C, Corallini S, Battistini L, Bernardi G, Stefanini M, Vicini E. Identification and enrichment of spermatogonial stem cells displaying side-population phenotype in immature mouse testis. Faseb J 2004;18(2):376–8.PubMedGoogle Scholar
  42. (42).
    Lo KC, Lei Z, Rao Ch V, Beck J, Lamb DJ. De novo testosterone production in luteinizing hormone receptor knockout mice after transplantation of leydig stem cells. Endocrinology 2004;145(9):4011–5.PubMedGoogle Scholar
  43. (43).
    Watanabe K, Nishida K, Yamato M, Umemoto T, Sumide T, Yamamoto K, Maeda N, Watanabe H, Okano T, Tano Y. Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett 2004;565(1–3):6–10.PubMedGoogle Scholar
  44. (44).
    Bhatt RI, Brown MD, Hart CA, Gilmore P, Ramani VA, George NJ, Clarke NW. Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry 2003;54A(2):89–99.Google Scholar
  45. (45).
    Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H, Muguruma Y, Tsuboi K, Itabashi Y, Ikeda Y, Ogawa S, Okano H, Hotta T, Ando K, Fukuda K. Non-hematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 2004;104(12):3581–7.PubMedGoogle Scholar
  46. (46).
    Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA 2003;100(11):6487–92.PubMedGoogle Scholar
  47. (47).
    Iwatani H, Ito T, Imai E, Matsuzaki Y, Suzuki A, Yamato M, Okabe M, Hori M. Hematopoietic and nonhematopoietic potentials of Hoechst(low)/side population cells isolated from adult rat kidney. Kidney Int 2004;65(5):1604–14.PubMedGoogle Scholar
  48. (48).
    Terunuma A, Jackson KL, Kapoor V, Telford WG, Vogel JC. Side population keratinocytes resembling bone marrow side population stem cells are distinct from label-retaining keratinocyte stem cells. J Invest Dermatol 2003;121(5):1095–103.CrossRefPubMedGoogle Scholar
  49. (49).
    Triel C, Vestergaard ME, Bolund L, Jensen TG, Jensen UB. Side population cells in human and mouse epidermis lack stem cell characteristics. Exp Cell Res 2004;295(1):79–90.CrossRefPubMedGoogle Scholar
  50. (50).
    Summer R, Kotton DN, Sun X, Ma B, Fitzsimmons K, Fine A. Side population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol 2003;285(1):L97–104.PubMedGoogle Scholar
  51. (51).
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414(6859):105–11.CrossRefPubMedGoogle Scholar
  52. (52).
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100(7):3983–8.CrossRefPubMedGoogle Scholar
  53. (53).
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3(7):730–7.PubMedGoogle Scholar
  54. (54).
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63(18):5821–8.PubMedGoogle Scholar
  55. (55).
    Wulf GG, Wang RY, Kuehnle I, Weidner D, Marini F, Brenner MK, Andreeff M, Goodell MA. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 2001;98(4):1166–73.PubMedGoogle Scholar
  56. (56).
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004;101(39):14228–33.CrossRefPubMedGoogle Scholar
  57. (57).
    Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 2004;101(3):781–6.PubMedGoogle Scholar
  58. (58).
    Setoguchi T, Taga T, Kondo T. Cancer stem cells persist in many cancer cell lines. Cell Cycle 2004;3(4):414–5.PubMedGoogle Scholar
  59. (59).
    Idziorek T, Estaquier J, De Bels F, Ameisen JC. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J Immunol Methods 1995;185(2):249–58.PubMedGoogle Scholar
  60. (60).
    Zhang X, Kiechle F. Hoechst 33342-induced apoptosis is associated with decreased immunoreactive topoisomerase I and topoisomerase I-DNA complex formation. Ann Clin Lab Sci 2001;31(2):187–98.PubMedGoogle Scholar
  61. (61).
    Zhang X, Kiechle FL. Hoechst 33342-induced apoptosis is associated with intracellular accumulation of E2F-1 protein in BC3H-1 myocytes and HL-60 cells. Arch Pathol Lab Med 2001;125(1):99–104.PubMedGoogle Scholar
  62. (62).
    Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM. Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 2000;60(1):47–50.PubMedGoogle Scholar
  63. (63).
    Wellings SR, Jensen HM, Marcum RG. An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 1975;55(2):231–73.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.The Breakthrough Breast Cancer CentreThe Institute of Cancer ResearchLondonUnited Kingdom
  2. 2.Breast Biology Group, CR-UK Department of Medical OncologyUniversity of Manchester, Christie Hospital (NHS) TrustManchesterUnited Kingdom
  3. 3.Breast Biology Group, CR-UK Department of Medical OncologyUniversity of Manchester, Christie Hospital (NHS) TrustManchesterUnited Kingdom

Personalised recommendations