Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Inherently trap-free convex landscapes for fully quantum optimal control

  • 91 Accesses

  • 1 Citations


A general quantum system may be steered by a control of either classical or quantum nature and the latter scenario is particularly important in many quantum engineering problems including coherent feedback and reservoir engineering. In this paper, we consider a quantum system steered by a quantum controller and explore the underlying Q–Q (quantum–quantum) control landscape features for the expectation value of an arbitrary observable of the system, with the control being the engineered initial state of the quantum controller. It is shown that the Q–Q control landscape is inherently convex, and hence devoid of local suboptima. Distinct from the landscapes for quantum systems controlled by time-dependent classical fields, the controllability is not a prerequisite for the Q–Q landscape to be trap-free, and there are no saddle points that generally exist with a classical controller. However, the forms of Hamiltonian, the flexibility in choosing initial state of the controller, as well as the control duration, can influence the reachable optimal value on the landscape. Moreover, we show that the optimal solution of the Q–Q control landscape can be readily extracted from a de facto landscape observable playing the role of an effective “observer”. For illustration of the basic Q–Q landscape principles, we consider the Jaynes–Cummings model depicting a two-level atom in the presence of a cavity quantized radiation field.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    C. Brif, R. Chakrabarti, H. Rabitz, Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008 (2010)

  2. 2.

    S.J. Glaser, U. Boscain, T. Calarco, C.P. Koch, W. Koeckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrueggen, D. Sugny, F.K. Wilhelm, Training schrodinger’s cat: quantum optimal control strategic report on current status, visions and goals for research in europe. Eur. Phys. J. D 69(12), 279 (2015)

  3. 3.

    R.S. Judson, H. Rabitz, Teaching lasers to control molecules. Phys. Rev. Lett. 68(10), 1500–1503 (1992)

  4. 4.

    J. Werschnik, E.K.U. Gross, Quantum optimal control theory. J. Phys. B-atomic Mol. Opt. Phys. 40(18), R175–R211 (2007)

  5. 5.

    H.A. Rabitz, M.M. Hsieh, C.M. Rosenthal, Quantum optimally controlled transition landscapes. Science 303(5666), 1998–2001 (2004)

  6. 6.

    V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology. Nat. Photonics 5(4), 222–229 (2011)

  7. 7.

    V. Dunjko, J.M. Taylor, H.J. Briegel, Quantum-enhanced machine learning. Phys. Rev. Lett. 117(13), 130501 (2016)

  8. 8.

    E. Aimeur, G. Brassard, S. Gambs, Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)

  9. 9.

    B. Russell, H. Rabitz, R.-B. Wu, Control landscapes are almost always trap free: a geometric assessment. J. Phys. A Math. Theor. 50(20), 205302 (2017)

  10. 10.

    K.W. Moore, H. Rabitz, Exploring constrained quantum control landscapes. J. Chem. Phys. 137(13), 134113 (2012)

  11. 11.

    F. Xue, S.X. Yu, C.P. Sun, Quantum control limited by quantum decoherence. Phys. Rev. A 73(1), 013403 (2006)

  12. 12.

    H.C. Fu, H. Dong, X.F. Liu, C.P. Sun, Indirect control with a quantum accessor: coherent control of multilevel system via a qubit chain. Phys. Rev. A 75(5), 052317 (2007)

  13. 13.

    R. Romano, D. D’Alessandro, Environment-mediated control of a quantum system. Phys. Rev. Lett. 97(8), 080402 (2006)

  14. 14.

    R. Romano, D. D’Alessandro, Incoherent control and entanglement for two-dimensional coupled systems. Phys. Rev. A 73(2), 022323 (2006)

  15. 15.

    D. D’Alessandro, R. Romano, Indirect controllability of quantum systems; a study of two interacting quantum bits. IEEE Trans. Autom. Control 57(8), 2009–2020 (2012)

  16. 16.

    R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2000)

  17. 17.

    M. Gruebele, Fully quantum coherent control. Chem Phys 276(3), 33–46 (2001)

  18. 18.

    L. Braun, W.T. Strunz, J.S. Briggs, Classical limit of the interaction of a quantum system with the electromagnetic field. Phys. Rev. A 70(3), 033814 (2004)

  19. 19.

    S. Deffner, Optimal control of a qubit in an optical cavity. J. Phys. B At. Mol. Opt. Phys. 47(14), 145502 (2014)

  20. 20.

    V. Giesz, N. Somaschi, G. Hornecker, T. Grange, B. Reznychenko, L. De Santis, J. Demory, C. Gomez, I. Sagnes, A. Lemaitre, O. Krebs, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffeves, P. Senellart, Coherent control of a solid-state quantum bit with few-photon pulses, arXiv:1512.04725

  21. 21.

    A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P.J. Love, A. Aspuru-Guzik, J.L. O’Brien, A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)

  22. 22.

    H.J. Kimble, The quantum internet. Nature 453(7198), 1023–1030 (2008)

  23. 23.

    C.K. Law, J.H. Eberly, Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76(7), 1055–1058 (1996)

  24. 24.

    A. Pechen, Engineering arbitrary pure and mixed quantum states. Phys. Rev. A 84(4), 042106 (2011)

  25. 25.

    L. G. Yaffe, Large \(n\) limits as classical mechanics, Rev. Mod. Phys. 54 (1982) 407–435.

  26. 26.

    V. Ramakrishna, M.V. Salapaka, M. Dahleh, H. Rabitz, A. Peirce, Controllability of molecular-systems. Phys. Rev. A 51(2), 960–966 (1995)

  27. 27.

    R.-B. Wu, R. Long, J. Dominy, T.-S. Ho, H. Rabitz, Singularities of quantum control landscapes. Phys. Rev. A 86(1), 013405 (2012)

  28. 28.

    C. Altafini, F. Ticozzi, Modeling and control of quantum systems: an introduction. IEEE Trans. Autom. Control 57(8), 1898–1917 (2012)

  29. 29.

    R. Wu, H. Rabitz, M. Hsieh, Characterization of the critical submanifolds in quantum ensemble control landscapes. J. Phys. A Math. Theor. 41(1), 1–12 (2008)

  30. 30.

    J.F. Haase, Z.-Y. Wang, J. Casanova, M.B. Plenio, Soft quantum control for highly selective interactions among joint quantum systems. Phys. Rev. Lett. 121, 050402 (2018)

  31. 31.

    S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

  32. 32.

    J. Dominy, H. Rabitz, Dynamic homotopy and landscape dynamical set topology in quantum control. J. Math. Phys. 53(8), 082201 (2012)

  33. 33.

    A.E. Bashirov, E.M. Kurpinar, A. Ozyapici, Multiplicative calculus and its applications. J. Math. Anal. Appl. 337(1), 36–48 (2008)

  34. 34.

    K. Kraus, General state changes in quantum theory. Ann. Phys. 64, 311–335 (1971)

  35. 35.

    S. Lloyd, Coherent quantum feedback. Phys. Rev. A 62(2), 022108 (2000)

  36. 36.

    R.-B. Wu, C. Brif, M.R. James, H. Rabitz, Limits of optimal control yields achievable with quantum controllers. Phys. Rev. A 91(4), 042327 (2015)

  37. 37.

    E. Zahedinejad, S. Schirmer, B.C. Sanders, Evolutionary algorithms for hard quantum control. Phys. Rev. A 90(3), 032310 (2014)

  38. 38.

    E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to beam maser. Proc. IEEE 51(1), 89 (1963)

  39. 39.

    M. Hofheinz, H. Wang, M. Ansmann, R.C. Bialczak, E. Lucero, M. Neeley, A.D. O’Connell, D. Sank, J. Wenner, J.M. Martinis, A.N. Cleland, Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546 (2009).

  40. 40.

    M. Grant, S. Boyd, Cvx: Matlab software for disciplined convex programming, version 2.0 beta.

  41. 41.

    R. Wu, H. Rabitz, M. Hsieh, Characterization of the critical submanifolds in quantum ensemble control landscapes. J. Phys. A Math. Theor. 41(1), 015006 (2008)

  42. 42.

    M. Hsieh, R. Wu, H. Rabitz, Topology of the quantum control landscape for observables. J. Chem. Phys. 130(10), 104109 (2009)

  43. 43.

    H. Rabitz, M. Hsieh, C. Rosenthal, Landscape for optimal control of quantum-mechanical unitary transformations. Phys. Rev. A 72(5), 052337 (2005)

  44. 44.

    C. Joe-Wong, T.-S. Ho, R. Long, H. Rabitz, R. Wu, Topology of classical molecular optimal control landscapes in phase space. J. Chem. Phys. 138(12), 124114 (2013)

Download references


Re-Bing Wu acknowledges the support of the National Key R&D Program of China (Grants No. 2017YFA0304304) and NSFC (Grants No. 61833010 and No. 61773232). Qiuyang Sun acknowledges the support of the Princeton Plasma Science and Technology Program and the National Science Foundation (CHE-1763198). Tak-San Ho acknowledges the support of the Department of Energy (DE-FG02-02ER15344). Herschel Rabitz acknowledges the support of the Army Research Office (W911NF-19-1-0382).

Author information

Correspondence to Re-Bing Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Sun, Q., Ho, T. et al. Inherently trap-free convex landscapes for fully quantum optimal control. J Math Chem 57, 2154–2167 (2019).

Download citation


  • Quantum control
  • Optimal control
  • Convex optimization