Advertisement

Numerical kinetic model with regularization for NR–PB natural and poly-butadiene rubber blends: implementation and validation against experimental data

  • G. MilaniEmail author
  • F. Milani
Original Paper
  • 8 Downloads

Abstract

A simple and versatile numerical approach of experimental data regularization plus a kinetic model to predict the vulcanization behavior in a rheometer for natural rubber (NR) and poly-butadiene (PB) blends is presented. The numerical model proposed uses generic rheometer experimental curves to estimate kinetic constants of the cure reactions, preliminarily regularizing input data through Cn continuous polynomial splines of degree n, with spline knots equally spaced or placed at user’s discretion. Splines coefficients are efficiently evaluated through a standard non-linear least squares optimization procedure. In this way a set of meta-data fitting optimally experimental values is obtained, with a smooth prediction of the local curing rate. The kinetic approach adopted is classic but adaptable to a wide class of cases and characterized by only three kinetic constants, describing two reactions occurring in parallel and two in series (reversion phenomenon). The determination of the three kinetic constants characterizing the model is performed graphically in quasi analytical form. The model is benchmarked by means of an ad-hoc conducted experimental campaign carried out with different typologies of rubber blends constituted by NR and PB at 70–30% and 50–50% concentrations, with sulfur at 1 phr and two accelerants (TBSS and DPG) at 1 and 3 phr, under standard vulcanization conditions (rheometer) at 150 °C, 170 °C and 180 °C.

Keywords

NR/high cis PB blends Vulcanization Rheometer experimental data Kinetic numerical model Experimental data fitting Predictive behavior 

Notes

References

  1. 1.
    H.E. Railsback, W.T. Cooper, Rubber Chem. Technol. 32(1), 308–320 (1959)CrossRefGoogle Scholar
  2. 2.
    M. Pazonyl, T. Dimitrov, Rubber Chem. Technol. 40(4), 1119 (1967)CrossRefGoogle Scholar
  3. 3.
    K. Fujimoto, N. Yoshimiya, Rubber Chem. Technol. 41(3), 669–677 (1968)CrossRefGoogle Scholar
  4. 4.
    M.A. Mansilla, A.J. Marzocca, C. Macchi, A. Somoza, Eur. Polym. J. 69, 50–61 (2015)CrossRefGoogle Scholar
  5. 5.
    M.A. Mansilla, A.J. Marzocca, C. Macchi, A. Somoza, Polym. Test. 63, 150–157 (2017)CrossRefGoogle Scholar
  6. 6.
    B. Likozar, M. Krajnc, Marcomol. Symp. 243, 104 (2006)CrossRefGoogle Scholar
  7. 7.
    B. Likozar, M. Krajnc, J. Appl. Polym. Sci. 103(1), 293–307 (2007)CrossRefGoogle Scholar
  8. 8.
    S.A. Groves, Rubber Chem. Technol. 71, 958–965 (1998)CrossRefGoogle Scholar
  9. 9.
    G. Milani, F. Milani, Chem. Eng. Trans. 57, 1495–1500 (2017)Google Scholar
  10. 10.
    A.Y. Coran, J. Appl. Polym. Sci. 87, 24–30 (2003)CrossRefGoogle Scholar
  11. 11.
    G. Milani, F. Milani, Rubber Chem. Technol. 85(4), 590 (2012)CrossRefGoogle Scholar
  12. 12.
    F.D.B. de Sousa, A. Zanchet, C.H. Scuracchio, J. Appl. Polym. Sci. 134(41), 45325 (2017)CrossRefGoogle Scholar
  13. 13.
    D.W. Van Krevelen, Properties of Polymers (Elsevier, Norwich, 1990), p. 102Google Scholar
  14. 14.
    M.L. Studebaker, J.R. Beatty, Chapter 9 - The Rubber Compound and Its Composition, in Science and Technology of Rubber, ed. by F.R. Eirich (Academic Press, 1978), pp. 367–418.  https://doi.org/10.1016/B978-0-12-234360-5.50014-6
  15. 15.
    I.S. Han, C.B. Chung, S.J. Kang, S.J. Kim, C. Chung, Polymer (Korea) 22, 223 (1998)Google Scholar
  16. 16.
    G. Milani, F. Milani, Polym. Test. 58, 104–115 (2017)CrossRefGoogle Scholar
  17. 17.
    G. Milani, F. Milani, J. Math. Chem. 55, 552–583 (2017)CrossRefGoogle Scholar
  18. 18.
    X. Sun, A.I. Isayev, Cure kinetics study of unfilled and carbon black filled synthetic isoprene rubber. Rubber Chem. Technol. 82, 149 (2009)CrossRefGoogle Scholar
  19. 19.
    P.J. Corish, Chapter 12 - Elastomer Blends, in Science and Technology of Rubber, ed. by F.R. Eirich (Academic Press, 1978), pp. 489–530.  https://doi.org/10.1016/B978-0-12-234360-5.50017-1
  20. 20.
    G. Milani, R. Donetti, T. Hanel, F. Milani, J. Math. Chem. 53, 975–997 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Politecnico di MilanoMilanItaly
  2. 2.Chem.Co ConsultantOcchiobelloItaly

Personalised recommendations