Advertisement

Journal of Mathematical Chemistry

, Volume 57, Issue 2, pp 616–631 | Cite as

Full analytical solution of a nucleation-growth type kinetic model of nanoparticle formation

  • Rebeka Szabó
  • Gábor LenteEmail author
Original Paper
  • 51 Downloads

Abstract

The analytical solution of a specific kinetic model describing nanoparticle formation is presented. The model starts from a monomer unit, two of which combine in a slow second-order seed formation reaction. The other process is second-order particle growth between a particle and a monomer unit, the rate constant of which is proportional to the mass of the growing nanoparticle. Exact analytical solutions are derived for the time dependence of the concentrations of all different kinds of nanoparticles. The average number of monomer units, the average size and polydispersity is also given by exact formulas. It is shown that the final size distribution of nanoparticles is described by a monotonically decreasing function under all conditions. Possibilities for the comparison of these modeling results with actual experimental data are also considered.

Keywords

Kinetics Moments Nanoparticle growth Analytical solution 

Notes

Acknowledgements

The research was financed by the Higher Education Institutional Excellence Programme of the Ministry of Human Capacities in Hungary, within the framework of the 1st thematic programme of the University of Pécs.

Supplementary material

10910_2018_975_MOESM1_ESM.docx (205 kb)
Supplementary material 1 (DOCX 204 kb)

References

  1. 1.
    D. Baowan, K. Chayantrakom, P. Satiracoo, B.J. Cox, J. Math. Chem. 49, 1042–1053 (2011)CrossRefGoogle Scholar
  2. 2.
    R.K.F. Lee, J.M. Hill, J. Math. Chem. 50, 1289–1303 (2012)CrossRefGoogle Scholar
  3. 3.
    D. Baowan, V. Helms, J. Math. Chem. 53, 29–40 (2015)CrossRefGoogle Scholar
  4. 4.
    G. Chen, I. Roy, C. Yang, P.N. Prasad, Chem. Rev. 116, 2826–2885 (2016)CrossRefGoogle Scholar
  5. 5.
    D. Zámbó, S. Pothorszky, D.F. Brougham, A. Deák, RSC Adv. 6, 27151–27157 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Devard, V.S. Aghemo, C.A.C. Dorantes, M. Gutierrez Arzaluz, F.A. Marchesini, M. Alicia Ulla, React. Kinet. Mech. Catal. 120, 39–54 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Popova, Á. Szegedi, H. Lazarova, M. Dimitrov, Y. Kalvachev, G. Atanasova, A. Ristić, N. Wilde, R. Gläser, React. Kinet. Mech. Catal. 120, 55–67 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Kinnear, T.L. Moore, L. Rodriguez-Lorenzo, B. Rothen-Rutishauser, A. Petri-Fink, Chem. Rev. 117, 11476–11521 (2017)CrossRefGoogle Scholar
  9. 9.
    G. Shi, Y. Bao, B. Chen, J. Xu, React. Kinet. Mech. Catal. 122, 289–303 (2017)CrossRefGoogle Scholar
  10. 10.
    S.F. Tan, S.W. Chee, G. Lin, U. Mirsaidov, Acc. Chem. Res. 50, 1303–1312 (2017)CrossRefGoogle Scholar
  11. 11.
    C. Sronsri, C. Danvirutai, P. Noisong, React. Kinet. Mech. Catal. 121, 555–577 (2017)CrossRefGoogle Scholar
  12. 12.
    L. Xu, H.W. Liang, Y. Yang, S.H. Yu, Chem. Rev. 118, 3209–3250 (2018)CrossRefGoogle Scholar
  13. 13.
    S.T. Hunt, Y. Román-Leshkov, Acc. Chem. Res. 51, 1054–1062 (2018)CrossRefGoogle Scholar
  14. 14.
    G. Panzarasa, A. Osypova, A. Sicher, A. Bruinink, E.R. Dufresne, Soft Matter 14, 6415–6418 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Forgács, K. Moldován, P. Herman, E. Baranyai, I. Fábián, G. Lente, J. Kalmár, J. Phys. Chem. C (2018).  https://doi.org/10.1021/acs.jpcc.8b04227 Google Scholar
  16. 16.
    K. Kang, S. Redner, P. Meakin, F. Leyvraz, Phys. Rev. A 33, 1171–1182 (1986)CrossRefGoogle Scholar
  17. 17.
    D.W. Schaefer, J.P. Wilcoxon, K.D. Keefer, B.C. Bunker, R.K. Pearson, I.M. Thomas, D.E. Miller, AIP Conf. Proc. 154, 63–80 (1987)CrossRefGoogle Scholar
  18. 18.
    B.J. McCoy, G. Madras, J. Colloid Interface Sci. 201, 200–209 (1998)CrossRefGoogle Scholar
  19. 19.
    B.J. McCoy, Chem. Eng. Sci. 57, 2279–2285 (2002)CrossRefGoogle Scholar
  20. 20.
    J.Y. Rempel, M.G. Bawendi, K.F. Jensen, J. Am. Chem. Soc. 131, 4479–4489 (2009)CrossRefGoogle Scholar
  21. 21.
    Z. Szabó, in Comprehensive Chemical Kinetics, Volume 2. Theory of Kinetics, ed. by C.H. Bamford, C.F.H. Tipper (Elsevier, Amsterdam, 1969)Google Scholar
  22. 22.
    G. Lente, Deterministic Kinetics in Chemistry and Systems Biology (Springer, New York, 2015)CrossRefGoogle Scholar
  23. 23.
    M.L. Strekalov, J. Math. Chem. 53, 1313–1324 (2015)CrossRefGoogle Scholar
  24. 24.
    R. Tóbiás, G. Tasi, J. Math. Chem. 54, 85–99 (2016)CrossRefGoogle Scholar
  25. 25.
    H.Y. Alfifi, T.R. Marchant, M.I. Nelson, J. Math. Chem. 54, 1632–1657 (2016)CrossRefGoogle Scholar
  26. 26.
    G. Lente, J. Math. Chem. 55, 832–848 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Rivallin, M. Benmami, A. Kanaev, A. Gaunand, Trans. IChemE A Chem. Eng. Res. Des. 83(A1), 67–74 (2005)CrossRefGoogle Scholar
  28. 28.
    G. Lente, I. Fábián, G. Bazsa, N. J. Chem. 31, 1707 (2007)CrossRefGoogle Scholar
  29. 29.
    A.K. Horváth, I. Nagypál, ChemPhysChem 16, 588–594 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Lente, Phys. Chem. Chem. Phys. 9, 6134–6141 (2007)CrossRefGoogle Scholar
  31. 31.
    G. Lente, J. Phys. Chem. A 110, 12711–12713 (2006)CrossRefGoogle Scholar
  32. 32.
    S.S. Rane, P. Choi, Chem. Mater. 17, 926 (2005)CrossRefGoogle Scholar
  33. 33.
    S. Labidi, Z. Jia, M.B. Amar, K. Chhor, A. Kanaev, Phys. Chem. Chem. Phys. 17, 2651–2659 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Inorganic and Analytical ChemistryUniversity of DebrecenDebrecenHungary
  2. 2.Department of General and Physical ChemistryUniversity of PécsPecsHungary

Personalised recommendations