Abstract
A space-filling polyhedron is a polyhedron that can tessellate the 3D space. The complete bipartite graph K2.3 is the graph representation of [1,1,1]-propellane, a synthesized molecule, or rather of its reduced form, appearing in the polymer called staffane, with all rings being rhombs/squares. Further, the complete bipartite graphs K2.n represent generalized [1,..,1n]-propellanes, in the following named rhombellanes; they are involved in the space-filling within rhombic arrays. This paper presents construction of some crystals and quasicrystals consisting of rhombellanes, and their characterization in crystallographic terms (by connectivity and ring signature) and in topological terms (by Omega polynomial).
Keywords
Rhombellane Ring signature sequence Hamiltonian circuitNotes
Acknowledgements
This work was supported by a Grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI—UEFISCDI, Project Number 8/2015, acronym GEMNS).
References
- 1.V.A. Blatov, O. Delgado-Friedrichs, M. O’Keeffe, D.M. Proserpio, Acta Crystallogr. A 63, 418 (2007)CrossRefGoogle Scholar
- 2.B. Grünbaum, G.C. Shephard, Bull. Am. Math. Soc. 3, 951 (1980)CrossRefGoogle Scholar
- 3.M. Gardner, The Sixth Book of Mathematical Games from Scientific American (University of Chicago Press, Chicago, 1984)Google Scholar
- 4.H. Steinhaus, Mathematical Snapshots, 3rd edn. (Dover, New York, 1999), pp. 185–190Google Scholar
- 5.N.W. Johnson, Uniform Polytopes (Cambridge University Press, Cambridge, 2000)Google Scholar
- 6.M. Goldberg, Geom. Dedicata. 8, 491 (1979)CrossRefGoogle Scholar
- 7.D. Weaire, R. Phelan, Philos. Mag. Let. 69, 107 (1994)CrossRefGoogle Scholar
- 8.T. Aste, D. Weaire, The Pursuit of Perfect Packing, 2nd edn. (Taylor & Francis, CRC Press, New York, London, 2008)Google Scholar
- 9.T.C. Hales, Ann. Math. 162, 1065 (2005)CrossRefGoogle Scholar
- 10.F.C. Frank, J.S. Kasper, Acta Crystallogr. 11, 184 (1958)CrossRefGoogle Scholar
- 11.F.C. Frank, J.S. Kasper, Acta Crystallogr. 12, 483 (1959)CrossRefGoogle Scholar
- 12.J. Kepler, The Six-Cornered Snowflake (Clarendon, Oxford, 1966)Google Scholar
- 13.R. Penrose, Bull. Inst. Math. Appl. 10, 266 (1974)Google Scholar
- 14.J.H. Conway, S. Torquato, Proc. Natl. Acad. Sci. 103, 10612 (2006)CrossRefGoogle Scholar
- 15.M.V. Diudea, Multi-Shell Polyhedral Clusters (Springer, New York, 2018)CrossRefGoogle Scholar
- 16.E. Steinitz, Polyeder und Raumeinteilungen, Encyclopädie der mathematischen Wissenschaften, vol. 3 (B.G. Teubner Verlag, Leipzig, 1922), pp. 1–139Google Scholar
- 17.K.B. Wiberg, F.H. Walker, J. Am. Chem. Soc. 104, 5239 (1982)CrossRefGoogle Scholar
- 18.P. Kazynsky, J. Michl, J. Am. Chem. Soc. 110, 5225 (1988)CrossRefGoogle Scholar
- 19.M.V. Diudea, Iran. J. Math. Chem. 9, 1 (2018)Google Scholar
- 20.M.V. Diudea, Iran. J. Math. Chem. 9, 167 (2018)Google Scholar
- 21.B. Szefler, P. Czeleń, M.V. Diudea, Studia Univ. “Babes-Bolyai”. Chemia 63, 7 (2018)Google Scholar
- 22.F. Harary, Graph Theory (Addison-Wesley, Reading, 1969)CrossRefGoogle Scholar
- 23.P.J. Steinhardt, Endeavour 14, 112 (1990)CrossRefGoogle Scholar
- 24.T.T. Luo, H.L. Tsai, S.L. Yang, Y.H. Liu, R.D. Yadav, C.C. Su, C.H. Ueng, L.G. Lin, K.L. Lu, Angew. Chem. Int. Ed. 44, 6063 (2005)CrossRefGoogle Scholar
- 25.S. Bhattacharya, M. Gnanavel, A.J. Bhattacharya, S. Natarajan, Cryst. Growth Des. 14, 310 (2014)CrossRefGoogle Scholar
- 26.M. O’Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, Accts. Chem. Res. 41, 1782 (2008)CrossRefGoogle Scholar
- 27.D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984)CrossRefGoogle Scholar
- 28.M.V. Diudea, A. Pîrvan-Moldovan, R. Pop, M. Medeleanu, MATCH Commun. Math. Comput. Chem. 80, 835 (2018)Google Scholar
- 29.L. Euler, Novi Comm. Acad. Sci. Petrop. 4, 109 (1752–53)Google Scholar
- 30.E. Schulte, Acta Cryst. A 70, 203 (2014)CrossRefGoogle Scholar
- 31.M.V. Diudea, M. Topan, A. Graovac, J. Chem. Inf. Comput. Sci. 34, 1072 (1994)CrossRefGoogle Scholar
- 32.C.L. Nagy, M.V. Diudea, MATCH Commun. Math. Comput. Chem. 77, 479 (2017)Google Scholar
- 33.M.V. Diudea, Nanomolecules and Nanostructures—Polynomials and Indices, MCM, 10 (University of Kragujevac, Serbia, 2010)Google Scholar
- 34.Wolfram Mathematica, Version 10.4, (Champaign, IL, 2017)Google Scholar
- 35.http://rcsr.anu.edu.au/nets. Accessed June 2017
- 36.P.E. John, A.E. Vizitiu, S. Cigher, M.V. Diudea, MATCH Commun. Math. Comput. Chem. 57, 479 (2007)Google Scholar
- 37.D.Ž. Djoković, J. Combin. Theory. Ser. B 14, 263 (1973)CrossRefGoogle Scholar
- 38.P.M. Winkler, Discrete Appl. Math. 8, 209 (1984)CrossRefGoogle Scholar
- 39.M.V. Diudea, S. Klavžar, Acta Chim. Slov. 57, 565 (2010)Google Scholar
- 40.S. Klavžar, MATCH Commun. Math. Comput. Chem. 5, 217 (2008)Google Scholar
- 41.M.V. Diudea, Carpath. J. Math. 22, 43 (2006)Google Scholar
- 42.C.L. Nagy, M.V. Diudea, Nano Studio Software (”Babes-Bolyai” University, Cluj, 2009)Google Scholar