Advertisement

Journal of Mathematical Chemistry

, Volume 56, Issue 10, pp 3045–3075 | Cite as

A novel chaos control strategy for discrete-time Brusselator models

  • Qamar Din
Original Paper
  • 93 Downloads

Abstract

This article deals with the dynamical analysis of discrete-time Brusselator models. Euler’s forward and nonstandard difference schemes are implemented for discretization of Brusselator system. We investigate the local dynamics related to equilibria of both discrete-time models. Furthermore, with the help of bifurcation theory and center manifold theorem, explicit parametric conditions for directions and existence of flip and Hopf bifurcations are investigated. A novel chaos control method is implemented in order to control chaos in discrete-time Brusselator models under the influence of flip and Hopf bifurcations. Numerical simulations are provided to illustrate theoretical discussion and effectiveness of newly introduced chaos control strategy.

Keywords

Brusselator model Local stability Flip bifurcation Hopf bifurcation Chaos control 

Notes

Acknowledgements

The author thanks the main editor and anonymous referees for their valuable comments and suggestions leading to improvement of this paper.

References

  1. 1.
    I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford University Press, New York, 1998)Google Scholar
  2. 2.
    R.J. Field, L. Gyorgyi, Chaos in Chemistry and Biochemistry (World Scientific Publishing Company, Singapore, 1993)CrossRefGoogle Scholar
  3. 3.
    B.P. Belousov, Collection of Short Papers on Radiation Medicine (Medical Publisher, Moscow, 1959), p. 145Google Scholar
  4. 4.
    A.M. Zhabotinsky, Periodical process of oxidation of malonic acid solution (a study of the Belousov reaction kinetics). Biofizika 9, 306–311 (1964)Google Scholar
  5. 5.
    A.M. Zhabotinsky, Periodic liquid phase reactions. Proc. Acad. Sci. USSR 157, 392–395 (1964)Google Scholar
  6. 6.
    I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1700 (1968)CrossRefGoogle Scholar
  7. 7.
    G. Nicolis, I. Prigogine, Self-Organizations in Non-equilibrium Systems (Wiley-Interscience, New York, 1977)Google Scholar
  8. 8.
    P. Gray, S.K. Scott, The Brusselator model of oscillatory reactions. J. Chem. Soc. Faraday Trans. I 84(4), 993–1012 (1988)CrossRefGoogle Scholar
  9. 9.
    G.C. Layek, An Introduction to Dynamical Systems and Chaos (Springer, New Delhi, 2015)CrossRefGoogle Scholar
  10. 10.
    J.D. Murray, Mathematical Biology (Springer, New York, 1989)CrossRefGoogle Scholar
  11. 11.
    R.P. Agarwal, P.J.Y. Wong, Advance Topics in Difference Equations (Kluwer, Dordrecht, 1997)CrossRefGoogle Scholar
  12. 12.
    R. Kapral, Discrete models for chemically reacting systems. J. Math. Chem. 6(1), 113–163 (1991)CrossRefGoogle Scholar
  13. 13.
    R.K. Pearson, Discrete-Time Dynamic Models: Topics in Chemical Engineering (Oxford University Press, Oxford, 1999)Google Scholar
  14. 14.
    C.A. Floudas, X. Lin, Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review. Comput. Chem. Eng. 28, 2109–2129 (2004)CrossRefGoogle Scholar
  15. 15.
    H. Kang, Y. Pesin, Dynamics of a discrete Brusselator model: escape to infinity and Julia set. Milan J. Math. 73(1), 1–17 (2005)CrossRefGoogle Scholar
  16. 16.
    Z. Zafar, K. Rehan, M. Mushtaq, M. Rafiq, Numerical treatment for nonlinear Brusselator chemical model. J. Differ. Equ. Appl. 23(3), 521–538 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Sanayei, Controlling chaotic forced Brusselator chemical reaction, in Proceedings of WCE, London, UK (2010)Google Scholar
  18. 18.
    L. Xu, L.J. Zhao, Z.X. Chang, J.T. Feng, G. Zhang, Turing instability and pattern formation in a semi-discrete Brusselator model. Mod. Phys. Lett. B 27(1), 1350006 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Yu, A.B. Gumel, Bifurcation and stability analyses for a coupled Brusselator model. J. Sound Vib. 244(5), 795–820 (2001)CrossRefGoogle Scholar
  20. 20.
    A.A. Golovin, B.J. Matkowsky, V.A. Volpert, Turing pattern formation in the Brusselator model with superdiffusion. SIAM J. Appl. Math. 69(1), 251–272 (2008)CrossRefGoogle Scholar
  21. 21.
    A.V. Dernov, Regular dynamics and diffusion chaos in the Brusselator model. Differ. Equ. 37(11), 1631–1633 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Ma, J. Hu, Bifurcation and stability analysis of steady states to a Brusselator model. Appl. Math. Comput. 236, 580–592 (2014)Google Scholar
  23. 23.
    J.C. Tzou, B.J. Matkowsky, V.A. Volpert, Interaction of turing and Hopf modes in the superdiffusive Brusselator model. Appl. Math. Lett. 22, 1432–1437 (2009)CrossRefGoogle Scholar
  24. 24.
    Z. Lin, R. Ruiz-Baier, C. Tian, Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion. J. Comput. Phys. 256, 806–823 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Zhou, C. Mu, Pattern formation of a coupled two-cell Brusselator model. J. Math. Anal. Appl. 366, 679–693 (2010)CrossRefGoogle Scholar
  26. 26.
    Q. Bie, Pattern formation in a general two-cell Brusselator model. J. Math. Anal. Appl. 376, 551–564 (2011)CrossRefGoogle Scholar
  27. 27.
    M.S.H. Chowdhury, T.H. Hassan, S. Mawa, A new application of homotopy perturbation method to the reaction-diffusion Brusselator model. Procedia Soc. Behav. Sci. 8, 648–653 (2010)CrossRefGoogle Scholar
  28. 28.
    V.V. Osipov, E.V. Ponizovskaya, Stochastic resonance in the Brusselator model. Phys. Rev. E 61(4), 4603–4605 (2000)CrossRefGoogle Scholar
  29. 29.
    T. Biancalani, T. Galla, A.J. McKane, Stochastic waves in a Brusselator model with nonlocal interaction. Phys. Rev. E 84, 026201 (2011)CrossRefGoogle Scholar
  30. 30.
    A.-M. Wazwaz, The decomposition method applied to systems of partial differential equations and to the reaction-diffusion Brusselator model. Appl. Math. Comput. 110, 251–264 (2000)Google Scholar
  31. 31.
    P.V. Kuptsov, S.P. Kuznetsov, E. Mosekilde, Particle in the Brusselator model with flow. Physica D 163, 80–88 (2002)CrossRefGoogle Scholar
  32. 32.
    S.H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering (Addison-Wesley, New York, 1994)Google Scholar
  33. 33.
    Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis models. J. Math. Chem. 56(3), 904–931 (2018)CrossRefGoogle Scholar
  34. 34.
    Q. Din, T. Donchev, D. Kolev, Stability, bifurcation analysis and chaos control in chlorine dioxide–iodine–malonic acid reaction. MATCH Commun. Math. Comput. Chem. 79(3), 577–606 (2018)Google Scholar
  35. 35.
    Z. He, X. Lai, Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal. RWA 12, 403–417 (2011)CrossRefGoogle Scholar
  36. 36.
    Z. Jing, J. Yang, Bifurcation and chaos in discrete-time predator–prey system. Chaos Soliton Fractals 27, 259–277 (2006)CrossRefGoogle Scholar
  37. 37.
    X. Liu, D. Xiao, Complex dynamic behaviors of a discrete-time predator–prey system. Chaos Soliton Fractals 32, 80–94 (2007)CrossRefGoogle Scholar
  38. 38.
    H.N. Agiza, E.M. ELabbasy, H. EL-Metwally, A.A. Elsadany, Chaotic dynamics of a discrete prey–predator model with Holling type II. Nonlinear Anal. RWA 10, 116–129 (2009)CrossRefGoogle Scholar
  39. 39.
    B. Li, Z. He, Bifurcations and chaos in a two-dimensional discrete Hindmarsh–Rose model. Nonlinear Dyn. 76(1), 697–715 (2014)CrossRefGoogle Scholar
  40. 40.
    L.-G. Yuan, Q.-G. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator–prey system. Appl. Math. Model. 39(8), 2345–2362 (2015)CrossRefGoogle Scholar
  41. 41.
    J. Carr, Application of Center Manifold Theory (Springer, New York, 1981)CrossRefGoogle Scholar
  42. 42.
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)CrossRefGoogle Scholar
  43. 43.
    C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos (CRC Press, Boca Raton, 1999)Google Scholar
  44. 44.
    S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 2003)Google Scholar
  45. 45.
    Y.H. Wan, Computation of the stability condition for the Hopf bifurcation of diffeomorphism on \(R^2\). SIAM J. Appl. Math. 34, 167–175 (1978)CrossRefGoogle Scholar
  46. 46.
    Y.A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1997)Google Scholar
  47. 47.
    G. Chen, J. Fang, Y. Hong, H. Qin, Controlling Hopf bifurcations: discrete-time systems. Discrete Dyn. Nat. Soc. 5, 29–33 (2000)CrossRefGoogle Scholar
  48. 48.
    G. Chen, X. Yu, On time-delayed feedback control of chaotic systems. IEEE Trans. Circuits Syst. 46, 767–772 (1999)CrossRefGoogle Scholar
  49. 49.
    E.H. Abed, H.O. Wang, R.C. Chen, Stabilization of period-doubling bifurcation and implications for control of chaos. Physica D 70, 154–164 (1994)CrossRefGoogle Scholar
  50. 50.
    G.L. Wen, D.L. Xu, J.H. Xie, Controlling Hopf bifurcations of discrete-time systems in resonance. Chaos Soliton Fractals 23, 1865–1877 (2005)CrossRefGoogle Scholar
  51. 51.
    X.S. Luo, G.R. Chen, B.H. Wang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Soliton Fractals 18, 775–783 (2003)CrossRefGoogle Scholar
  52. 52.
    E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)CrossRefPubMedGoogle Scholar
  53. 53.
    F.J. Romeiras, C. Grebogi, E. Ott, W.P. Dayawansa, Controlling chaotic dynamical systems. Physica D 58, 165–192 (1992)CrossRefGoogle Scholar
  54. 54.
    K. Ogata, Modern Control Engineering, 2nd edn. (Prentice-Hall, Englewood, 1997)Google Scholar
  55. 55.
    X. Zhang, Q.L. Zhang, V. Sreeram, Bifurcation analysis and control of a discrete harvested prey–predator system with Beddington–DeAngelis functional response. J. Frankl. Inst. 347, 1076–1096 (2010)CrossRefGoogle Scholar
  56. 56.
    J.L. Ren, L.P. Yu, Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model. J. Nonlinear Sci. 26, 1895–1931 (2016)CrossRefGoogle Scholar
  57. 57.
    Q. Din, Neimark–Sacker bifurcation and chaos control in Hassell–Varley model. J. Differ. Equ. Appl. 23(4), 741–762 (2017)CrossRefGoogle Scholar
  58. 58.
    Q. Din, Ö.A. Gümüş, H. Khalil, Neimark–Sacker bifurcation and chaotic behaviour of a modified Host-Parasitoid model. Z. Naturforsch. A 72(1), 25–37 (2017)CrossRefGoogle Scholar
  59. 59.
    Q. Din, Controlling chaos in a discrete-time prey-predator model with Allee effects. Int. J. Dyn. Control 6(2), 858–872 (2018)CrossRefGoogle Scholar
  60. 60.
    Q. Din, Qualitative analysis and chaos control in a density-dependent host-parasitoid system. Int. J. Dyn. Control 6(2), 778–798 (2018)CrossRefGoogle Scholar
  61. 61.
    Q. Din, A.A. Elsadany, S. Ibrahim, Bifurcation analysis and chaos control in a second-order rational difference equation. Int. J. Nonlinear Sci. Numer. 19(1), 53–68 (2018)CrossRefGoogle Scholar
  62. 62.
    Q. Din, M. Hussain, Controlling chaos and Neimark--Sacker bifurcation in a Host--Parasitoid model. Asain J. Control (2018).  https://doi.org/10.1002/asjc.1809 CrossRefGoogle Scholar
  63. 63.
    S. Lynch, Dynamical Systems with Applications Using Mathematica (Birkhäuser, Boston, 2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsThe University of Poonch RawalakotRawalakotPakistan

Personalised recommendations