Skip to main content
Log in

Chemical compound design using nuclear charge distributions

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Finding optimal solutions to design problems in chemistry is hampered by the combinatorially large search space. We develop a general theoretical framework for finding chemical compounds with prescribed properties using nuclear charge distributions. The key is the reformulation of the design problem into an optimization problem on probability density functions in chemical space. In order to achieve tractability, a constrained search formalism on the nuclear charge distributions, which are non-negative, is used to reduce the dimensionality of the problem. Furthermore, we introduce approximations to the exact functional, as derived, for common design properties and constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.N. Bolon, S.L. Mayo, Enzyme-like proteins by computational design. Proc. Nat. Acad. Sci. USA. 98(25), 14274–14279 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. J.J. Havranek, P.B. Harbury, Automated design of specificity in molecular recognition. Nat. Struct. Biol. 10(1), 45–52 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. S. Park, Y. Xi, J.G. Saven, Advances in computational protein design. Curr. Opin. Struct. Biol. 14(4), 487–494 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. N.G. Mang, C. Zeng, Reference energy extremal optimization: a stochastic search algorithm applied to computational protein design. J. Comput. Chem. 29(11), 1762–1771 (2008)

    Article  CAS  Google Scholar 

  5. S.V. Dudiy, A. Zunger, Searching for alloy configurations with target physical properties: impurity design via a genetic algorithm inverse band structure approach. Phys. Rev. Lett. 97, 046401 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. A. Franceschetti, S.V. Dudiy, S.V. Barabash, A. Zunger, J. Xu, M. van Schilfgaarde, First-principles combinatorial design of transition temperatures in multicomponent systems: the case of mn in GaAs. Phys. Rev. Lett. 97(4), 047202 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. P. Piquini, P.A. Graf, A. Zunger, Band-gap design of quaternary (In, Ga) (As, Sb) semiconductors via the inverse-band-structure approach. Phys. Rev. Lett. 100, 186403 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. J.-L. Reymond, The chemical space project. Acc. Chem. Res. 48(3), 722–730 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  CAS  PubMed  Google Scholar 

  10. I.O. Bohachevsky, M.E. Johnson, M.L. Stein, Generalized simulated annealing for function optimization. Technometrics 28(3), 209–217 (1986)

    Article  Google Scholar 

  11. H. Muhlenbein, M. Gorgesschleuter, O. Kramer, Evolution algorithms in combinatorial optimization. Parallel Comput. 7(1), 65–85 (1988)

    Article  Google Scholar 

  12. J. Desmet, M. Demaeyer, B. Hazes, I. Lasters, The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356(6369), 539–542 (1992)

    Article  CAS  PubMed  Google Scholar 

  13. B.D. Allen, S.L. Mayo, Dramatic performance enhancements for the faster optimization algorithm. J. Comput. Chem. 27(10), 1071–1075 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. S. Keinan, W.D. Paquette, J.J. Skoko, D.N. Beratan, W.T. Yang, S. Shinde, P.A. Johnston, J.S. Lazo, P. Wipf, Computational design, synthesis and biological evaluation of para-quinone-based inhibitors for redox regulation of the dual-specificity phosphatase Cdc25B. Organ. Biomol. Chem. 6(18), 3256–3263 (2008)

    Article  CAS  Google Scholar 

  15. B. Christopher Rinderspacher, J. Andzelm, A. Rawlett, J. Dougherty, D.N. Beratan, W. Yang, Discrete optimization of electronic hyperpolarizabilities in a chemical subspace. J. Chem. Theory Comput. 5(12), 3321–3329 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. J.M. Elward, B. Christopher Rinderspacher, Smooth heuristic optimization on a complex chemical subspace. Phys. Chem. Chem. Phys. 17(37), 24322–24335 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15(9), 095003 (2013)

    Article  CAS  Google Scholar 

  18. A.G. Kusne, T. Gao, A. Mehta, L. Ke, M.C. Nguyen, K.M. Ho, V. Antropov, C.Z. Wang, M.J. Kramer, C. Long et al., On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci. Rep. 4(1), 6367 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. T.C. Le, D.A. Winkler, Discovery and optimization of materials using evolutionary approaches. Chem. Rev. 116(10), 6107–6132 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. K.W. Moore, A. Pechen, X.-J. Feng, J. Dominy, V. Beltrani, H. Rabitz, Universal characteristics of chemical synthesis and property optimization. Chem. Sci. 2(3), 417–424 (2011)

    Article  CAS  Google Scholar 

  21. K.W. Moore, A. Pechen, X.-J. Feng, J. Dominy, V.J. Beltrani, H. Rabitz, Why is chemical synthesis and property optimization easier than expected? Phys. Chem. Chem. Phys. 13, 10048–10070 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. D.F. Green, A statistical framework for hierarchical methods in molecular simulation and design. J. Chem. Theory Comput. 6(5), 1682–1697 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. G.A. Arteca, P.G. Mezey, Constant electronic-energy trajectories in abstract nuclear-charge space and level set topology. J. Chem. Phys 87(10), 5882–5891 (1987)

    Article  CAS  Google Scholar 

  24. G. Paul, Mezey. A simple relation between nuclear charges and potential surfaces. J. Am. Chem. Soc. 107(11), 3100–3105 (1985)

    Article  Google Scholar 

  25. P.G. Mezey, Classification schemes of nuclear geometries and the concept of chemical structure. metric spaces of chemical structure sets over potential energy hypersurfaces. J. Chem. Phys. 78(10), 6182–6186 (1983)

    Article  CAS  Google Scholar 

  26. O.A. von Lilienfeld, R.D. Lins, U. Rothlisberger, Variational particle number approach for rational compound design. Phys. Rev. Lett. 95, 153002 (2005)

    Article  CAS  Google Scholar 

  27. O.A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, D. Sebastiani, Variational optimization of effective atom centered potentials for molecular properties. J. Chem. Phys. 122(1), 014113 (2005)

    Article  CAS  Google Scholar 

  28. M.L. Wang, X.Q. Hu, D.N. Beratan, W.T. Yang, Designing molecules by optimizing potentials. J. Am. Chem. Soc. 128(10), 3228–3232 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. O.A. von Lilienfeld, M.E. Tuckerman, Molecular grand-canonical ensemble density functional theory and exploration of chemical space. J. Chem. Phys. 125(15), 154104 (2006)

    Article  CAS  Google Scholar 

  30. P.G. Mezey, Cluster topology and bounds for the electronic energy. Surf. Sci. 156, 597–604 (1985)

    Article  CAS  Google Scholar 

  31. P.G. Mezey, Simple lower and upper bounds for isomerization energies. Can. J. Chem. 62(7), 1356–1357 (1984)

    Article  CAS  Google Scholar 

  32. P.G. Mezey, Constraints on electronic energy hypersurfaces of higher multiplicities. J. Chem. Phys. 80(10), 5055–5057 (1984)

    Article  CAS  Google Scholar 

  33. S. Keinan, X.Q. Hu, D.N. Beratan, W.T. Yang, Designing molecules with optimal properties using the linear combination of atomic potentials approach in an AM1 semiempirical framework. J. Phys. Chem. A 111(1), 176–181 (2007)

    Article  CAS  PubMed  Google Scholar 

  34. P.G. Mezey, Level set topology of the nuclear charge space and the electronic energy functional. Int. J. Quantum Chem. 22(1), 101–114 (1982)

    Article  CAS  Google Scholar 

  35. P.G. Mezey, Electronic energy inequalities for isoelectronic molecular systems. Theor. Chim. Acta. 59(4), 321–332 (1981)

    Article  CAS  Google Scholar 

  36. P.G. Mezey, Level set topologies and convexity relations for hamiltonians with linear parameters. Chem. Phys. Lett. 87(3), 277–279 (1982)

    Article  CAS  Google Scholar 

  37. P.G. Mezey, The holographic electron density theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the universal molecule model, in Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2017 (ICCMSE-2017), vol 1906 AIP Conference Proceedings, 2017. International Conference of Computational Methods in Sciences and Engineering (ICCMSE), ed. by T.E. Simos, Z.K. Monovasilis, T. Thessaloniki, (Greece, 2017)

  38. P.G. Mezey, Relations between real molecules through abstract molecules: the reference cluster approach. Theor. Chem. Acc. 134(11), 134 (2015)

    Article  CAS  Google Scholar 

  39. P.G. Mezey, Discrete skeletons of continua in the universal molecule model. in International Conference of Computational Methods in Sciences and Engineering 2009 (ICCMSE 2009), vol 1504 AIP Conference Proceedings, AIP, 2012. 7th International Conference on Computational Methods in Science and Engineering (ICCMSE), ed. by T.E. Simos, G. Maroulis, (Rhodes, Greece, 2009) pp. 725–728

  40. P.G. Mezey, On discrete to continuum transformations and the universal molecule model—a mathematical chemistry perspective of molecular families. in AIP Conference Proceedings, vol 2 AIP Conference Proceedings, AIP, 2007. International Conference on Computational Methods in Science and Engineering, ed. by T.E. Simos, G. Maroulis (Corfu, Greece, 2007) pp. 513–516

  41. G.A. Arteca, P.G. Mezey, Simple analytic bounds for the electronic-energy from level set boundaries of nuclear-charge space. Phys. Rev. A 35(10), 4044–4050 (1987)

    Article  CAS  Google Scholar 

  42. R.J. Harrison, G.I. Fann, T. Yanai, Z. Gan, G. Beylkin, Multiresolution quantum chemistry: Basic theory and initial applications. J. Chem. Phys. 121(23), 11587–11598 (2004)

    Article  CAS  PubMed  Google Scholar 

  43. C.D. Griffin, R. Acevedo, D.W. Massey, J.L. Kinsey, B.R. Johnson, Multimode wavelet basis calculations via the molecular self-consistent-field plus configuration-interaction method. J. Chem. Phys. 124(13), 134105 (2006)

    Article  CAS  PubMed  Google Scholar 

  44. D.W. Massey, R. Acevedo, B.R. Johnson, Additions to the class of symmetric-antisymmetric multiwavelets: derivation and use as quantum basis functions. J. Chem. Phys. 124(1), 014101 (2006)

    Article  CAS  Google Scholar 

  45. J.E. Pask, P.A. Sterne, Finite element methods in ab initio electronic structure calculations. Modell. Simul. Mater. Sci. Eng. 13(3), R71–R96 (2005)

    Article  CAS  Google Scholar 

  46. V. Gavini, K. Bhattacharya, M. Ortiz, Quasi-continuum orbital-free density-functional theory:a route to multi-million atom non-periodic DFT calculation. J. Mech. Phys. Solids 55, 697–718 (2007)

    Article  CAS  Google Scholar 

  47. P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya, M. Ortiz, Non-periodic finite-element formulation of kohn–sham density functional theory. J. Mech. Phys. Solids 58(2), 256–280 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Christopher Rinderspacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rinderspacher, B.C. Chemical compound design using nuclear charge distributions. J Math Chem 56, 2379–2391 (2018). https://doi.org/10.1007/s10910-018-0896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0896-3

Keywords

Mathematics Subject Classification

Navigation