Advertisement

Journal of Mathematical Chemistry

, Volume 56, Issue 6, pp 1759–1781 | Cite as

Quasi-steady state reduction for the Michaelis–Menten reaction–diffusion system

  • Martin Frank
  • Christian Lax
  • Sebastian Walcher
  • Olaf Wittich
Original Paper
  • 99 Downloads

Abstract

The Michaelis–Menten mechanism is probably the best known model for an enzyme-catalyzed reaction. For spatially homogeneous concentrations, QSS reductions are well known, but this is not the case when chemical species are allowed to diffuse. We will discuss QSS reductions for both the irreversible and reversible Michaelis–Menten reaction in the latter case, given small initial enzyme concentration and slow diffusion. Our work is based on a heuristic method to obtain an ordinary differential equation which admits reduction by Tikhonov–Fenichel theory. We will not give convergence proofs but we provide numerical results that support the accuracy of the reductions.

Keywords

Reaction–diffusion equations Enzyme Singular perturbations 

Mathematics Subject Classification

92C45 34E15 80A32 35B4 

Notes

Acknowledgements

Christian Lax was supported by the DFG Research Training Group “Experimental and Constructive Algebra” (GRK 1632).

References

  1. 1.
    M. Bisi, F. Conforto, L. Desvillettes, Quasi-steady-state approximation for reaction–diffusion equations. Bull. Inst. Math. Acad. Sin. (N.S.) 2(4), 823–850 (2007). ISSN 0304-9825Google Scholar
  2. 2.
    D. Bothe, M. Pierre, Quasi-steady-state approximation for a reaction–diffusion system with fast intermediate. J. Math. Anal. Appl. 368(1), 120–132) (2010)CrossRefGoogle Scholar
  3. 3.
    D. Bothe, G. Rolland, Global existence for a class of reaction–diffusion systems with mass action kinetics and concentration-dependent diffusivities. Acta Appl. Math. 139(1), 25–57 (2014).  https://doi.org/10.1007/s10440-014-9968-y. ISSN 1572-9036
  4. 4.
    G.E. Briggs, J.B.S. Haldane, A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925)CrossRefGoogle Scholar
  5. 5.
    N.F. Britton, Reaction–Diffusion Equations And Their Application to Biology (Academic Press, London, 1986)Google Scholar
  6. 6.
    J. Eliaš. Trend to equilibrium for a reaction–diffusion system modelling reversible enzyme reaction. Preprint, (2016). arXiv:1610.07172
  7. 7.
    N. Fenichel, Geometric singular perturbation theory for ordinary differential equations. J. Differ. Eqs. 31(1), 53–98 (1979)CrossRefGoogle Scholar
  8. 8.
    A. Goeke, C. Lax, Quasi-steady state reduction for compartmental systems. Phys. D 327, 1–12 (2016).  https://doi.org/10.1016/j.physd.2016.04.013. ISSN 0167-2789CrossRefGoogle Scholar
  9. 9.
    A. Goeke, S. Walcher, Quasi-steady state: Searching for and utilizing small parameters. in Recent Trends in Dynamical Systems. Proceedings of a Conference in Honor of Jürgen Scheurle, vol. 35 of Springer Proceedings in Mathematics & Statistics (Springer, New York, 2013)Google Scholar
  10. 10.
    A. Goeke, S. Walcher, A constructive approach to quasi-steady state reductions. J. Math. Chem. 52(10), 2596–2626 (2014).  https://doi.org/10.1007/s10910-014-0402-5. ISSN 0259-9791CrossRefGoogle Scholar
  11. 11.
    A. Goeke, S. Walcher, E. Zerz, Classical quasi-steady state reduction—a mathematical characterization. Phys. D 345, 11–26 (2017)CrossRefGoogle Scholar
  12. 12.
    S.M. Hanson, S. Schnell, Reactant stationary approximation in enzyme kinetics. J. Phys. Chem. A 112, 8654–8658 (2008).  https://doi.org/10.1021/jp8026226 CrossRefGoogle Scholar
  13. 13.
    F.G. Heineken, H.M. Tsuchiya, R. Aris, On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. Math. Biosci. 1, 95–113 (1967)CrossRefGoogle Scholar
  14. 14.
    F.C. Hoppensteadt, Singular perturbations on the infinite interval. Trans. Am. Math. Soc. 123(2), 521–535 (1966). http://www.jstor.org/stable/1994672 ISSN 00029947
  15. 15.
    L. Kalachev, H. Kaper, T. Kaper, N. Popović, A. Zagaris, Reduction for Michaelis–Menten–Henri kinetics in the presence of diffusion. Electron. J. Differ. Eqs. (EJDE) 16, 155–184 (2007)Google Scholar
  16. 16.
    J. Keener, J. Sneyd, Mathematical physiology I: Cellular physiology, 2nd edn. (Springer, New York, 2009)CrossRefGoogle Scholar
  17. 17.
    C. Lax, Analyse und asymptotische Analyse von Kompartimentsystemen. PhD thesis, RWTH Aachen (2016).  https://doi.org/10.18154/RWTH-2016-09465
  18. 18.
    C. Lax, K. Seliger, S. Walcher, A coordinate-independent version of Hoppensteadt’s convergence theorem. Qual. Theory Dyn. Syst. (Mar 2017).  https://doi.org/10.1007/s12346-017-0235-2. ISSN 1662-3592
  19. 19.
    C. Lax, S. Walcher, Singular perturbations and scaling. (2017). In preperationGoogle Scholar
  20. 20.
    L. Michaelis, M.L. Menten, Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 (1913)Google Scholar
  21. 21.
    W. Miller, R. Alberty, Kinetics of the reversible Michaelis–Menten mechanism and the applicability of the steady state approximation. J. Am. Chem. Soc. 80, 5146–5151 (1958)CrossRefGoogle Scholar
  22. 22.
    L. Noethen, S. Walcher, Tikhonov’s theorem and quasi-steady state. Discrete Contin. Dyn. Syst. Ser. B 16(3), 945–961 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Schnell, Validity of the Michaelis–Menten equation - steady-state or reactant stationary assumption: that is the question. FEBS J. 281, 464–472 (2014).  https://doi.org/10.1111/febs.12564 CrossRefGoogle Scholar
  24. 24.
    L.A. Segel, M. Slemrod, The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31(3), 446–477 (1989)CrossRefGoogle Scholar
  25. 25.
    H. L. Smith, Monotone Dynamical Systems, vol. 41 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1995). ISBN 0-8218-0393-XGoogle Scholar
  26. 26.
    A.N. Tikhonov, Systems of differential equations containing a small parameter multiplying the derivative (in Russian). Math. Sb. 31, 575–586 (1952)Google Scholar
  27. 27.
    A.N. Yannacopoulos, A.S. Tomlin, J.Brindley, J.H. Merkin, M.J. Pilling, The use of algebraic sets in the approximation of inertial manifolds and lumping in chemical kinetic systems. Phys. D Nonlinear Phenom. 83(4), 421–449 (1995).  https://doi.org/10.1016/0167-2789(94)00244-K. ISSN 0167-2789. http://www.sciencedirect.com/science/article/pii/016727899400244K

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologySteinbuch Center for ComputingEggenstein-LeopoldshafenGermany
  2. 2.Lehrstuhl A f. MathematikRWTH AachenAachenGermany

Personalised recommendations