Journal of Mathematical Chemistry

, Volume 56, Issue 5, pp 1365–1392 | Cite as

Design formalism for DNA self-assembly of polyhedral skeletons using rigid tiles

  • Margherita Maria FerrariEmail author
  • Anna Cook
  • Alana Houlihan
  • Rebecca Rouleau
  • Nadrian C. Seeman
  • Greta Pangborn
  • Joanna Ellis-Monaghan
Original Paper


We describe the half-lap model, a mathematical framework that captures the geometric constraints of rigid tiles that are branched junction molecules used as building blocks for tile-based DNA self-assembly. The model captures not only the combinatorial structures of the sets of cohesive ends on the tiles, but also the specific geometry of the inter-arm angles of the tiles and most critically the relative orientations of adhering tiles. We illustrate the functionality of the model by providing provably optimal DNA self-assembly strategies to construct Platonic and Archimedean 3-regular polyhedral skeletons and computing the minimum number of tile types and bond-edge types for each target structure. We further demonstrate the utility of the model by using it to analyze the benefits and limitations of palindromic rigid tiles. Moreover, we give explicit combinatorial and geometric descriptions of the tiles needed for each construction.


DNA self-assembly strategies Rigid branched tiles Tile types Bond-edge types Platonic and Archimedean solids 



The work of Joanna Ellis-Monaghan, Greta Pangborn, and Nadrian C. Seeman was supported by the National Science Foundation (NSF) under Grant DMS-1332411.


  1. 1.
    C. Alves, F. Iacovelli, M. Falconi, F. Cardamone, B. Morozzo della Rocca, C.L.P. de Oliveira, A. Desideri, A simple and fast semiautomatic procedure for the atomistic modeling of complex DNA polyhedra. J. Chem. Inf. Model. 56(5), 941–949 (2016)CrossRefGoogle Scholar
  2. 2.
    E.S. Andersen, M. Dong, M.M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M.M. Golas, B. Sander, H. Stark, C.L.P. Oliveira, J.S. Pedersen, Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459(7243), 73–76 (2009)CrossRefGoogle Scholar
  3. 3.
    E. Benson, A. Mohammed, J. Gardell, S. Masich, E. Czeizler, P. Orponen, B. Högberg, DNA rendering of polyhedral meshes at the nanoscale. Nature 523(7561), 441–444 (2015)CrossRefGoogle Scholar
  4. 4.
    D. Bhatia, S. Mehtab, R. Krishnan, S.S. Indi, A. Basu, Y. Krishnan, Icosahedral DNA nanocapsules by modular assembly. Angew. Chem. Int. Ed. 48(23), 4134–4137 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Chen, N.C. Seeman, Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350(6319), 631–633 (1991)CrossRefGoogle Scholar
  6. 6.
    P.E. Constantinou, T. Wang, J. Kopatsch, L.B. Israel, X. Zhang, B. Ding, W.B. Sherman, X. Wang, J. Zheng, R. Sha, N.C. Seeman, Double cohesion in structural DNA nanotechnology. Org. Biomol. Chem. 4(18), 3414–3419 (2006)CrossRefGoogle Scholar
  7. 7.
    S.M. Douglas, I. Bachelet, G.M. Church, A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–834 (2012)CrossRefGoogle Scholar
  8. 8.
    S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, W.M. Shih, Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)CrossRefGoogle Scholar
  9. 9.
    M.N. Ellingham, J.A. Ellis-Monaghan, Edge-outer graph embedding and the complexity of the DNA reporter strand problem. ArXiv preprint arXiv:1710.09048 (2017)
  10. 10.
    J. Ellis-Monaghan, G. Pangborn, Using DNA self-assembly design strategies to motivate graph theory concepts. Math. Model. Nat. Phenom. 6(6), 96–107 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Ellis-Monaghan, G. Pangborn, L. Beaudin, D. Miller, N. Bruno, A. Hashimoto, Minimal tile and bond-edge types for self-assembling DNA graphs, in Discrete and Topological Models in Molecular Biology, ed. by N. Jonoska, M. Saito (Springer, Berlin/Heidelberg, 2014), pp. 241–270CrossRefGoogle Scholar
  12. 12.
    J. Ellis-Monaghan, G. Pangborn, N.C. Seeman, S. Blakeley, C. Disher, M. Falcigno, B. Healy, A. Morse, B. Singh, M. Westland, Design tools for reporter strands and DNA origami scaffold strands. Theor. Comput. Sci. 671(6), 69–78 (2017)CrossRefGoogle Scholar
  13. 13.
    C.M. Erben, R.P. Goodman, A.J. Turberfield, A self-assembled DNA bipyramid. J. Am. Chem. Soc. 129(22), 6992–6993 (2007)CrossRefGoogle Scholar
  14. 14.
    H. Fleischner, Eulerian Graphs and Related Topics, Volume 45 of Annals of Discrete Mathematics Part 1, vol. 1 (North-Holland, Amsterdam, 1990)Google Scholar
  15. 15.
    H. Fleischner, Eulerian Graphs and Related Topics, Volume 50 of Annals of Discrete Mathematics Part 1, vol. 2 (North-Holland, Amsterdam, 1991)Google Scholar
  16. 16.
    R.P. Goodman, I.A.T. Schaap, C.F. Tardin, C.M. Erben, R.M. Berry, C.F. Schmidt, A.J. Turberfield, Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310(5754), 1661–1665 (2005)CrossRefGoogle Scholar
  17. 17.
    B. Grünbaum, An enduring error. Elem. Math. 64, 89–101 (2009)CrossRefGoogle Scholar
  18. 18.
    P.J. Hagerman, Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 17(1), 265–286 (1988)CrossRefGoogle Scholar
  19. 19.
    D. Han, S. Pal, J. Nangreave, Z. Deng, Y. Liu, H. Yan, DNA origami with complex curvatures in three-dimensional space. Science 332(6027), 342–346 (2011)CrossRefGoogle Scholar
  20. 20.
    D. Han, S. Pal, Y. Yang, S. Jiang, J. Nangreave, Y. Liu, H. Yan, DNA gridiron nanostructures based on four-arm junctions. Science 339(6126), 1412–1415 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. He, T. Ye, M. Su, C. Zhang, A.E. Ribbe, W. Jiang, C. Mao, Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452(7184), 198–201 (2008)CrossRefGoogle Scholar
  22. 22.
    G. Hu, W.Y. Qiu, A. Ceulemans, A new Euler’s formula for DNA polyhedra. PLoS ONE 6(10), e26308 (2011)CrossRefGoogle Scholar
  23. 23.
    G. Hu, W.Y. Qiu, X.S. Cheng, S.Y. Liu, The complexity of Platonic and Archimedean polyhedral links. J. Math. Chem. 48(2), 401–412 (2010)CrossRefGoogle Scholar
  24. 24.
    G. Hu, Z. Wang, W.Y. Qiu, A survey on mathematical models for DNA polyhedra. Match Commun. Math. Comput. Chem. 70, 725–742 (2013)Google Scholar
  25. 25.
    G. Hu, Z. Wang, W.Y. Qiu, The topological analysis of enzymatic action on DNA polyhedral links. Bull. Math. Biol. 73(12), 3030–3046 (2011)CrossRefGoogle Scholar
  26. 26.
    G. Hu, X.D. Zhai, D. Lu, W.Y. Qiu, The architecture of Platonic polyhedral links. J. Math. Chem. 46(2), 592–603 (2009)CrossRefGoogle Scholar
  27. 27.
    R. Iinuma, Y. Ke, R. Jungmann, T. Schlichthaerle, J.B. Woehrstein, P. Yin, Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 344(6179), 65–69 (2014)CrossRefGoogle Scholar
  28. 28.
    N. Jonoska, S.A. Karl, M. Saito, Three dimensional DNA structures in computing. Biosystems 52(1), 143–153 (1999)CrossRefGoogle Scholar
  29. 29.
    N. Jonoska, G.L. McColm, A computational model for self-assembling flexible tiles, in Unconventional Computation, Vol. 3699, Lecture Notes in Computer Science, ed. by C.S. Calude, M.J. Dinneen, G. Păun, M.J. Pérez-Jímenez, G. Rozenberg (Springer, Berlin/Heidelberg, 2005), pp. 142–156Google Scholar
  30. 30.
    N. Jonoska, G.L. McColm, Complexity classes for self-assembling flexible tiles. Theor. Comput. Sci. 410(4), 332–346 (2009)CrossRefGoogle Scholar
  31. 31.
    N. Jonoska, G.L. McColm, Flexible versus rigid tile assembly, in Unconventional Computation, Vol. 4135, Lecture Notes in Computer Science, ed. by C.S. Calude, M.J. Dinneen, G. Păun, G. Rozenberg, S. Stepney (Springer, Berlin/Heidelberg, 2006), pp. 139–151Google Scholar
  32. 32.
    N. Jonoska, G.L. McColm, A. Staninska, Expectation and variance of self-assembled graph structures, in DNA Computing, Vol. 3892, Lecture Notes in Computer Science, ed. by A. Carbone, N.A. Pierce (Springer, Berlin/Heidelber, 2006), pp. 144–157Google Scholar
  33. 33.
    N. Jonoska, G.L. McColm, A. Staninska, On stoichiometry for the assembly of flexible tile DNA complexes. Nat. Comput. 10(3), 1121–1141 (2011)CrossRefGoogle Scholar
  34. 34.
    N. Jonoska, G.L. McColm, A. Staninska, Spectrum of a pot for DNA complexes, in DNA Computing, Vol. 4287, Lecture Notes in Computer Science, ed. by C. Mao, T. Yokomori (Springer, Berlin/Heidelberg, 2006), pp. 83–94Google Scholar
  35. 35.
    N. Jonoska, N.C. Seeman, G. Wu, On existence of reporter strands in DNA-based graph structures. Theor. Comput. Sci. 410(15), 1448–1460 (2009)CrossRefGoogle Scholar
  36. 36.
    N. Jonoska, R. Twarock, Blueprints for dodecahedral DNA cages. J. Phys. A: Math. Theor. 41(30), 304043 (2008)CrossRefGoogle Scholar
  37. 37.
    Y. Ke, Designer three-dimensional DNA architectures. Curr. Opin. Struct. Biol. 27, 122–128 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Ke, S.M. Douglas, M. Liu, J. Sharma, A. Cheng, A. Leung, Y. Liu, W.M. Shih, H. Yan, Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131(43), 15903–15908 (2009)CrossRefGoogle Scholar
  39. 39.
    Y. Ke, L.L. Ong, W.M. Shih, P. Yin, Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)CrossRefGoogle Scholar
  40. 40.
    Y. Ke, L.L. Ong, W. Sun, J. Song, M. Dong, W.M. Shih, P. Yin, DNA brick crystals with prescribed depths. Nat. Chem. 6(11), 994–1002 (2014)CrossRefGoogle Scholar
  41. 41.
    Y. Ke, J. Sharma, M. Liu, K. Jahn, Y. Liu, H. Yan, Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 9(6), 2445–2447 (2009)CrossRefGoogle Scholar
  42. 42.
    Y. Ke, N.V. Voigt, K.V. Gothelf, W.M. Shih, Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 134(3), 1770–1774 (2012)CrossRefGoogle Scholar
  43. 43.
    D. Luo, The road from biology to materials. Mater. Today 6(11), 38–43 (2003)CrossRefGoogle Scholar
  44. 44.
    J. Nangreave, D. Han, Y. Liu, H. Yan, DNA origami: a history and current perspective. Curr. Opin. Chem. Biol. 14(5), 608–615 (2010)CrossRefGoogle Scholar
  45. 45.
    Z. Nie, X. Li, Y. Li, C. Tian, P. Wang, C. Mao, Self-assembly of DNA nanoprisms with only two component strands. Chem. Commun. 49(27), 2807–2809 (2013)CrossRefGoogle Scholar
  46. 46.
    J.A. Pelesko, Self Assembly: The Science of Things That Put Themselves Together (Chapman and Hall/CRC, Boca Raton, 2007)CrossRefGoogle Scholar
  47. 47.
    A.V. Pinheiro, D. Han, W.M. Shih, H. Yan, Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6(12), 763–772 (2011)CrossRefGoogle Scholar
  48. 48.
    W.Y. Qiu, Z. Wang, G. Hu, Chemistry & Mathematics of DNA Polyhedra (DNA: Properties and Modifications, Functions and Interactions, Recombination and Applications) (Nova Science Publishers, UK, 2010)Google Scholar
  49. 49.
    P.W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)CrossRefGoogle Scholar
  50. 50.
    P. Sa-Ardyen, A.V. Vologodskii, N.C. Seeman, The flexibility of DNA double crossover molecules. Biophys. J. 84(6), 3829–3837 (2003)CrossRefGoogle Scholar
  51. 51.
    N.C. Seeman, DNA in a material world. Nature 421(6921), 427–431 (2003)CrossRefGoogle Scholar
  52. 52.
    N.C. Seeman, Macromolecular design, nucleic acid junctions, and crystal formation. J. Biomol. Struct. Dyn. 3(1), 11–34 (1985)CrossRefGoogle Scholar
  53. 53.
    N.C. Seeman, Nucleic acid junctions and lattices. J. Theor. Biol. 99(2), 237–247 (1982)CrossRefGoogle Scholar
  54. 54.
    N.C. Seeman, Structural DNA Nanotechnology (Cambridge University Press, Cambridge, 2016)Google Scholar
  55. 55.
    J. Skilling, The complete set of uniform polyhedra. Philos. Trans. R. Soc. A 278(1278), 111–135 (1975)CrossRefGoogle Scholar
  56. 56.
    D.M. Smith, V. Schüller, C. Forthmann, R. Schreiber, P. Tinnefeld, T. Liedl, A structurally variable hinged tetrahedron framework from DNA origami. J. Nucleic Acids 2011, 360954 (2011)Google Scholar
  57. 57.
    A. Staninska, The graph of a pot with DNA molecules, in Proceedings of the 3rd Annual Conference on Foundations of Nanoscience (FNANO’06) (2006), pp. 222–226Google Scholar
  58. 58.
    L.H. Tan, H. Xing, Y. Lu, DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc. Chem. Res. 47(6), 1881–1890 (2014)CrossRefGoogle Scholar
  59. 59.
    C. Tian, X. Li, Z. Liu, W. Jiang, G. Wang, C. Mao, Directed self-assembly of DNA tiles into complex nanocages. Angew. Chem. Int. Ed. 126(31), 8179–8182 (2014)CrossRefGoogle Scholar
  60. 60.
    T. Wang, D. Schiffels, S. Martinez Cuesta, D. Kuchnir Fygenson, N.C. Seeman, Design and characterization of 1D nanotubes and 2D periodic arrays self-assembled from DNA multi-helix bundles. J. Am. Chem. Soc. 134(3), 1606–1616 (2012)CrossRefGoogle Scholar
  61. 61.
    D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, 2001)Google Scholar
  62. 62.
    E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
  63. 63.
    H. Yang, C.K. McLaughlin, F.A. Aldaye, G.D. Hamblin, A.Z. Rys, I. Rouiller, H.F. Sleiman, Metal-nucleic acid cages. Nat. Chem. 1(5), 390–396 (2009)CrossRefGoogle Scholar
  64. 64.
    C. Zhang, S.H. Ko, M. Su, Y. Leng, A.E. Ribbe, W. Jiang, C. Mao, Symmetry controls the face geometry of DNA polyhedra. J. Am. Chem. Soc. 131(4), 1413–1415 (2009)CrossRefGoogle Scholar
  65. 65.
    C. Zhang, M. Su, Y. He, X. Zhao, P. Fang, A.E. Ribbe, W. Jiang, C. Mao, Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc. Natl. Acad. Sci. USA 105(31), 10665–10669 (2008)CrossRefGoogle Scholar
  66. 66.
    F. Zhang, J. Nangreave, Y. Liu, H. Yan, Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136(32), 11198–11211 (2014)CrossRefGoogle Scholar
  67. 67.
    J. Zheng, J.J. Birktoft, Y. Chen, T. Wang, R. Sha, P.E. Constantinou, S.L. Ginell, C. Mao, N.C. Seeman, From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461(7260), 74–77 (2009)CrossRefGoogle Scholar
  68. 68.
    J. Zimmermann, M.P.J. Cebulla, S. Mönninghoff, G. von Kiedrowski, Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C3h linkers. Angew. Chem. Int. Ed. 47(19), 3626–3630 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsPolitecnico di MilanoMilanoItaly
  2. 2.Department of EnglishSaint Michael’s CollegeColchesterUSA
  3. 3.Department of MathematicsSaint Michael’s CollegeColchesterUSA
  4. 4.Department of ChemistryNew York UniversityNew YorkUSA
  5. 5.Department of Computer ScienceSaint Michael’s CollegeColchesterUSA

Personalised recommendations