Advertisement

CMMSE 18: geometric-arithmetic index and line graph

  • Domingo Pestana
  • José M. Sigarreta
  • Eva Tourís
Original Paper
  • 14 Downloads

Abstract

The concept of geometric-arithmetic index was introduced in the chemical graph theory recently, but it has shown to be useful. The aim of this paper is to obtain new inequalities involving the geometric-arithmetic index \(GA_1\) and characterize graphs extremal with respect to them. Besides, we prove inequalities involving the geometric-arithmetic index of line graphs.

Keywords

Geometric-arithmetic index Harmonic index Vertex-degree-based topological index Line graph 

Mathematics Subject Classification

MSC 05C07 MSC 92E10 

Notes

References

  1. 1.
    H. Abdo, D. Dimitrov, I. Gutman, On extremal trees with respect to the F-index. Kuwait J. Sci. 44(3), 1–8 (2017)Google Scholar
  2. 2.
    V. Andova, M. Petrusevski, Variable Zagreb indices and Karamata’s inequality. MATCH Commun. Math. Comput. Chem. 65, 685–690 (2011)Google Scholar
  3. 3.
    Z. Che, Z. Chen, Lower and upper bounds of the forgotten topological index. MATCH Commun. Math. Comput. Chem. 76, 635–648 (2016)Google Scholar
  4. 4.
    K.C. Das, On geometric-arithmetic index of graphs. MATCH Commun. Math. Comput. Chem. 64, 619–630 (2010)Google Scholar
  5. 5.
    K.C. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of graphs. MATCH Commun. Math. Comput. Chem. 65, 595–644 (2011)Google Scholar
  6. 6.
    K.C. Das, I. Gutman, B. Furtula, On first geometric-arithmetic index of graphs. Discrete Appl. Math. 159, 2030–2037 (2011)CrossRefGoogle Scholar
  7. 7.
    H. Deng, S. Elumalai, S. Balachandran, Maximum and second maximum of geometric-arithmetic index of tricyclic graphs. MATCH Commun. Math. Comput. Chem. 79, 467–475 (2018)Google Scholar
  8. 8.
    Z. Du, B. Zhou, N. Trinajstić, On geometric-arithmetic indices of (molecular) trees. MATCH Commun. Math. Comput. Chem. 66, 681–697 (2011)Google Scholar
  9. 9.
    M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first Zagreb index. MATCH Commun. Math. Comput. Chem. 68(1), 217–230 (2012)Google Scholar
  10. 10.
    B. Furtula, I. Gutman, A forgotten topological index. J. Math. Chem. 53(4), 1184–1190 (2015)CrossRefGoogle Scholar
  11. 11.
    I. Gutman, Degree-based topological indices. Croat. Chem. Acta 86, 351–361 (2013)CrossRefGoogle Scholar
  12. 12.
    I. Gutman, K.C. Das, The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83–92 (2004)Google Scholar
  13. 13.
    I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors vertex-degreebased topological indices. J. Serb. Chem. Soc. 78(6), 805–810 (2013)CrossRefGoogle Scholar
  14. 14.
    I. Gutman, N. Trinajstić, Graph theory and molecular orbitals total \(\pi \)-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)CrossRefGoogle Scholar
  15. 15.
    F. Harary, R.Z. Norman, Some properties of line digraphs. Rend. Circ. Math. Palermo 9, 161–169 (1960)CrossRefGoogle Scholar
  16. 16.
    N.H.M. Husin, R. Hasni, Z. Du, On extremum geometric-arithmetic indices of (molecular) trees. MATCH Commun. Math. Comput. Chem. 78, 375–386 (2017)Google Scholar
  17. 17.
    J. Krausz, Démonstration nouvelle d’un théorème de Whitney sur les réseaux. Mat. Fiz. Lapok 50, 75–85 (1943)Google Scholar
  18. 18.
    X. Li, J. Zheng, A unified approach to the extremal trees for different indices. MATCH Commun. Math. Comput. Chem. 54, 195–208 (2005)Google Scholar
  19. 19.
    X. Li, H. Zhao, Trees with the first smallest and largest generalized topological indices. MATCH Commun. Math. Comput. Chem. 50, 57–62 (2004)Google Scholar
  20. 20.
    M. Liu, B. Liu, Some properties of the first general Zagreb index. Australas. J. Combin. 47, 285–294 (2010)Google Scholar
  21. 21.
    A. Miličević, S. Nikolić, On variable Zagreb indices. Croat. Chem. Acta 77, 97–101 (2004)Google Scholar
  22. 22.
    M. Mogharrab, G.H. Fath-Tabar, Some bounds on \(GA_1\) index of graphs. MATCH Commun. Math. Comput. Chem. 65, 33–38 (2010)Google Scholar
  23. 23.
    S. Nikolić, A. Miličević, N. Trinajstić, A. Jurić, On use of the variable Zagreb \(^\nu M_2\) index in QSPR: boiling points of benzenoid hydrocarbons. Molecules 9, 1208–1221 (2004)CrossRefGoogle Scholar
  24. 24.
    S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after. Croat. Chem. Acta 76, 113–124 (2003)Google Scholar
  25. 25.
    E.A. Nordhaus, J.W. Gaddum, On complementary graphs. Am. Math. Mon. 63, 175–177 (1956)CrossRefGoogle Scholar
  26. 26.
    M. Randić, Novel graph theoretical approach to heteroatoms in QSAR. Chemomet. Intel. Lab. Syst. 10, 213–227 (1991)CrossRefGoogle Scholar
  27. 27.
    M. Randić, D. Plavšić, N. Lerš, Variable connectivity index for cycle-containing structures. J. Chem. Inf. Comput. Sci. 41, 657–662 (2001)CrossRefGoogle Scholar
  28. 28.
    J.M. Rodríguez, J.L. Sánchez, J.M. Sigarreta, On the first general Zagreb Indez. J. Math. Chem. 56, 1849–1864 (2018)CrossRefGoogle Scholar
  29. 29.
    J.M. Rodríguez, J.M. Sigarreta, On the geometric-arithmetic index. MATCH Commun. Math. Comput. Chem. 74, 103–120 (2015)Google Scholar
  30. 30.
    J.M. Rodríguez, J.M. Sigarreta, Spectral properties of geometric-arithmetic index. Appl. Math. Comput. 277, 142–153 (2016)Google Scholar
  31. 31.
    J.M. Rodríguez, J.M. Sigarreta, New results on the harmonic index and its generalizations. MATCH Commun. Math. Comput. Chem. 78(2), 387–404 (2017)Google Scholar
  32. 32.
    J. M. Rodríguez, J. M. Sigarreta, Relations between some topological indices (submitted)Google Scholar
  33. 33.
    P.S. Ranjini, V. Lokesha, I.N. Cangül, On the Zagreb indices of the line graphs of the subdivision graphs. Appl. Math. Comput. 218, 699–702 (2011)Google Scholar
  34. 34.
    M. Singh, KCh. Das, S. Gupta, A.K. Madan, Refined variable Zagreb indices: highly discriminating topological descriptors for QSAR/QSPR. Int. J. Chem. Model. 6(2–3), 403–428 (2017)Google Scholar
  35. 35.
    G. Su, L. Xu, Topological indices of the line graph of subdivision graphs and their Schur bounds. Appl. Math. Comput. 253, 395–401 (2015)Google Scholar
  36. 36.
    Texas Engineering Experiment Station. Thermodynamics Research Center, TRC thermodynamic tables, non-hydrocarbons, English edition. Texas A & M University System (1986)Google Scholar
  37. 37.
    M. Vöge, A.J. Guttmann, I. Jensen, On the number of benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci. 42, 456–466 (2002)CrossRefGoogle Scholar
  38. 38.
    D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 46, 1369–1376 (2009)CrossRefGoogle Scholar
  39. 39.
    H. Whitney, Congruent graphs and the connectivity of graphs. Am. J. Math. 54, 150–168 (1932)CrossRefGoogle Scholar
  40. 40.
    B. Zhou, N. Trinajstić, On general sum-connectivity index. J. Math. Chem. 47, 210–218 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad Carlos III de MadridLeganésSpain
  2. 2.Facultad de Matemáticas, Universidad Autónoma de GuerreroAcapulcoMexico
  3. 3.Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de MadridMadridSpain

Personalised recommendations