Advertisement

Journal of Mathematical Chemistry

, Volume 56, Issue 7, pp 1884–1901 | Cite as

Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters

  • Fiza Zafar
  • Alicia Cordero
  • R. Quratulain
  • Juan R. TorregrosaEmail author
Original Paper

Abstract

In this paper, we propose a family of optimal eighth order convergent iterative methods for multiple roots with known multiplicity with the introduction of two free parameters and three univariate weight functions. Also numerical experiments have applied to a number of academical test functions and chemical problems for different special schemes from this family that satisfies the conditions given in convergence result.

Keywords

Iterative methods Nonlinear equations Multiple roots Chemical reactor 

References

  1. 1.
    R. Behl, A. Cordero, S.S. Motsa, J.R. Torregrosa, On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265(15), 520–532 (2015)Google Scholar
  2. 2.
    R. Behl, A. Cordero, S.S. Motsa, J.R. Torregrosa, V. Kanwar, An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algor. 71(4), 775–796 (2016)CrossRefGoogle Scholar
  3. 3.
    R. Behl, A. Cordero, S.S. Motsa, J.R. Torregrosa, An eighth-order family of optimal multiple root finders and its dynamics. Numer. Algor. (2017). doi: 10.1007/s11075-017-0361-6
  4. 4.
    F.I. Chicharro, A. Cordero, J. R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. ID 780153 (2013)Google Scholar
  5. 5.
    A. Constantinides, N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications (Prentice Hall PTR, New Jersey, 1999)Google Scholar
  6. 6.
    J.M. Douglas, Process Dynamics and Control, vol. 2 (Prentice Hall, Englewood Cliffs, 1972)Google Scholar
  7. 7.
    Y.H. Geum, Y.I. Kim, B. Neta, A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Appl. Math. Comput. 270, 387–400 (2015)Google Scholar
  8. 8.
    Y.H. Geum, Y.I. Kim, B. Neta, A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 283, 120–140 (2016)Google Scholar
  9. 9.
    J.L. Hueso, E. Martınez, C. Teruel, Determination of multiple roots of nonlinear equations and applications. J. Math. Chem. 53, 880–892 (2015)CrossRefGoogle Scholar
  10. 10.
    L.O. Jay, A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)CrossRefGoogle Scholar
  11. 11.
    S. Li, X. Liao, L. Cheng, A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)Google Scholar
  12. 12.
    S.G. Li, L.Z. Cheng, B. Neta, Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010)CrossRefGoogle Scholar
  13. 13.
    B. Liu, X. Zhou, A new family of fourth-order methods for multiple roots of nonlinear equations. Nonlinear Anal. Model. Control 18(2), 143–152 (2013)Google Scholar
  14. 14.
    M. Shacham, Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 23, 1455–1481 (1986)CrossRefGoogle Scholar
  15. 15.
    M. Sharifi, D.K.R. Babajee, F. Soleymani, Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)CrossRefGoogle Scholar
  16. 16.
    J.R. Sharma, R. Sharma, Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010)Google Scholar
  17. 17.
    F. Soleymani, D.K.R. Babajee, T. Lofti, On a numerical technique forfinding multiple zeros and its dynamic. J. Egypt. Math. Soc. 21, 346–353 (2013)CrossRefGoogle Scholar
  18. 18.
    F. Soleymani, D.K.R. Babajee, Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013)CrossRefGoogle Scholar
  19. 19.
    R. Thukral, A new family of fourth-order iterative methods for solving nonlinear equations with multiple roots. J. Numer. Math. Stoch. 6(1), 37–44 (2014)Google Scholar
  20. 20.
    R. Thukral, Introduction to higher-order iterative methods for finding multiple roots of nonlinear equations. J. Math. Article ID 404635 (2013)Google Scholar
  21. 21.
    X. Zhou, X. Chen, Y. Song, Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. J. Comput. Math. Appl. 235, 4199–4206 (2011)CrossRefGoogle Scholar
  22. 22.
    X. Zhou, X. Chen, Y. Song, Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Advanced Studies in Pure and Applied MathematicsBahauddin Zakariya UniversityMultanPakistan
  2. 2.Instituto de Matemática MultidisciplinarUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations