Advertisement

Journal of Mathematical Chemistry

, Volume 55, Issue 8, pp 1669–1682 | Cite as

Sizes of pentagonal clusters in fullerenes

  • Nino Bašić
  • Gunnar Brinkmann
  • Patrick W. Fowler
  • Tomaž Pisanski
  • Nico Van Cleemput
Original Paper

Abstract

Stability and chemistry, both exohedral and endohedral, of fullerenes are critically dependent on the distribution of their obligatory 12 pentagonal faces. It is well known that there are infinitely many IPR-fullerenes and that the pentagons in these fullerenes can be at an arbitrarily large distance from each other. IPR-fullerenes can be described as fullerenes in which each connected cluster of pentagons has size 1. In this paper we study the combinations of cluster sizes that can occur in fullerenes and whether the clusters can be at an arbitrarily large distance from each other. For each possible partition of the number 12, we are able to decide whether the partition describes the sizes of pentagon clusters in a possible fullerene, and state whether the different clusters can be at an arbitrarily large distance from each other. We will prove that all partitions with largest cluster of size 5 or less can occur in an infinite number of fullerenes with the clusters at an arbitrarily large distance of each other, that 9 partitions occur in only a finite number of fullerene isomers and that 15 partitions do not occur at all in fullerenes.

Keywords

Fullerene Patch Distance Pentagonal incidence partition 

Mathematics Subject Classification

05C10 52B10 92E10 

Notes

Acknowledgements

The work of T.P. and N.B has been supported in part by ARRS Slovenia, Projects: P1-0294, N1-0032. In addition the work of T.P. was supported by Projects J1-7051 and J1-6720.

References

  1. 1.
    E. Albertazzi, C. Domene, P.W. Fowler, T. Heine, G. Seifert, C. Van Alsenoy, F. Zerbetto, Pentagon adjacency as a determinant of fullerene stability. Phys. Chem. Chem. Phys. 1(12), 2913–2918 (1999)CrossRefGoogle Scholar
  2. 2.
    A. Ayuela, P.W. Fowler, D. Mitchell, R. Schmidt, G. Seifert, F. Zerbetto, \(\text{ C }_{62}\): Theoretical evidence for a nonclassical fullerene with a heptagonal ring. J. Phys. Chem. 100(39), 15634–15636 (1996)CrossRefGoogle Scholar
  3. 3.
    D. Babić, A. Graovac, N. Trinajstić, On the HOMO-LUMO separation in fullerenes. Croat. Chem. Acta 66, 35–47 (1993)Google Scholar
  4. 4.
    J. Bornhöft, G. Brinkmann, J. Greinus, Pentagon-hexagon-patches with short boundaries. Eur. J. Comb. 24(5), 517–529 (2003). MR 1983676CrossRefGoogle Scholar
  5. 5.
    G. Brinkmann, N. Van Cleemput, Classification and generation of nanocones. Discret. Appl. Math. 159(15), 1528–1539 (2011)CrossRefGoogle Scholar
  6. 6.
    G. Brinkmann, O. Delgado Friedrichs, S. Lisken, A. Peeters, N. Van Cleemput, CaGe–a virtual environment for studying some special classes of plane graphs–an update. MATCH Commun. Math. Comput. Chem. 63(3), 533–552 (2010). MR 2666622Google Scholar
  7. 7.
    G. Brinkmann, A.W.M. Dress, A constructive enumeration of fullerenes. J. Algorithms 23, 345–358 (1997)CrossRefGoogle Scholar
  8. 8.
    G. Brinkmann, J. Goedgebeur, H. Mélot, K. Coolsaet, House of graphs: a database of interesting graphs. Discret. Appl. Math. 161, 311–314 (2013). http://hog.grinvin.org
  9. 9.
    G. Brinkmann, P. Goetschalckx, Enumeration of generalized fusenes. MATCH Commun. Math. Comput. Chem. 74(3), 505–520 (2015). MR 3444674Google Scholar
  10. 10.
    G. Brinkmann, U. von Nathusius, A.H.R. Palser, A constructive enumeration of nanotube caps. Discret. Appl. Math. 116, 55–71 (2002)CrossRefGoogle Scholar
  11. 11.
    G. Brinkmann, M. Yoshida, P.W. Fowler, New non-spiral fullerenes from old: generalised truncations of isolated-pentagon-triple carbon cages, MATCH: Comm. Math. Comput. Chem. 38, 7–17 (1998)Google Scholar
  12. 12.
    H.S.M. Coxeter, Virus macromolecules and geodesic domes, in A Spectrum of Mathematics, ed. by J.C. Butcher (Oxford University Press, Oxford, 1971), pp. 98–107Google Scholar
  13. 13.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, Cambridge, 1996). ISBN 0-12-221820-5Google Scholar
  14. 14.
    M. Endo, H.W. Kroto, Formation of carbon nanofibers. J. Phys. Chem. 96(17), 6941–6944 (1992)CrossRefGoogle Scholar
  15. 15.
    P.W. Fowler, Fullerene stability: one rule for the electron-rich. Nat. Chem. 7(11), 857–858 (2015)CrossRefGoogle Scholar
  16. 16.
    P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Dover, Mineola, 2006)Google Scholar
  17. 17.
    B. Grunbaum, T.S. Motzkin, The number of hexagons and the simplicity of geodesics on certain polyhedra. Can. J. Math. 15, 744–751 (1963)CrossRefGoogle Scholar
  18. 18.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  19. 19.
    D.J. Klein, A.T. Balaban, The eight classes of positive-curvature graphitic nanocones. J. Chem. Inf. Model. 46(1), 307–320 (2005)CrossRefGoogle Scholar
  20. 20.
    H.W. Kroto, The stability of the fullerenes \(\text{ C }_{24}\), \(\text{ C }_{28}\), \(\text{ C }_{32}\), \(\text{ C }_{36}\), \(\text{ C }_{50}\), \(\text{ C }_{60}\) and \(\text{ C }_{70}\). Nature 329, 529–531 (1987)CrossRefGoogle Scholar
  21. 21.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, \(\text{ C }_{60}\): Buckminsterfullerene. Nature 318, 162–163 (1985)CrossRefGoogle Scholar
  22. 22.
    D.E. Manolopoulos, J.C. May, S.E. Down, Theoretical studies of the fullerenes: C34 to C70. Chem. Phys. Lett. 181(2), 105–111 (1991)CrossRefGoogle Scholar
  23. 23.
    A.S. Matias, R.W.A. Havenith, M. Alcamí, A. Ceulemans, Is \(\text{ C }_{50}\) a superaromat? evidence from electronic structure and ring current calculations. Phys. Chem. Chem. Phys. 18, 11653–11660 (2016)CrossRefGoogle Scholar
  24. 24.
    A.K. Abdul-Sada, R. Taylor, J.P. Hare, H.W. Kroto, Isolation, separation and characterisation of the fullerenes \(\text{ C }_{60}\) and \(\text{ C }_{70}\): the third form of Carbon. J. Chem. Soc. Chem. Commun. 20, 1423–1424 (1990)Google Scholar
  25. 25.
    T.G. Schmalz, W.A. Seitz, D.J. Klein, G.E. Hite, Elemental carbon cages. J. Am. Chem. Soc. 110(4), 1113–1127 (1988)CrossRefGoogle Scholar
  26. 26.
    P. Schwerdtfeger, L. Wirz, J. Avery, The topology of fullerenes. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 5(1), 96–145 (2015)Google Scholar
  27. 27.
    A.J. Stone, D.J. Wales, Theoretical studies of icosahedral \(\text{ C }_{60}\) and some related species. Chem. Phys. Lett. 128(5), 501–503 (1986)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, S. Díaz-Tendero, M. Alcamí, F. Martín, Cage connectivity and frontier \(\pi \) orbitals govern the relative stability of charged fullerene isomers. Nat. Chem. 7(11), 927–934 (2015)CrossRefGoogle Scholar
  29. 29.
    M. Yoshida, P.W. Fowler, Dihedral fullerenes of threefold symmetry with and without face spirals. J. Chem. Soc. Faraday 93, 3289–3294 (1997)CrossRefGoogle Scholar
  30. 30.
    M. Yoshida, P.W. Fowler, Systematic relationships between fullerenes without spirals. Chem. Phys. Lett. 278, 256–261 (1997)CrossRefGoogle Scholar
  31. 31.
    X. Zhao, On the Structure and Relative Stability of \(\text{ C }_{50}\) Fullerenes. J. Phys. Chem. B 109, 5267–5272 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.University of PrimorskaKoperSlovenia
  2. 2.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia
  3. 3.Applied Mathematics, Computer Science and StatisticsGhent UniversityGentBelgium
  4. 4.Department of ChemistryUniversity of SheffieldSheffieldUK

Personalised recommendations