Skip to main content
Log in

New improved convergence analysis for Newton-like methods with applications

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We present a new semilocal convergence analysis for Newton-like methods using restricted convergence domains in a Banach space setting. The main goal of this study is to expand the applicability of these methods in cases not covered in earlier studies. The advantages of our approach include, under the same computational cost as previous studies, a more precise convergence analysis under the same computational cost on the Lipschitz constants involved. Numerical studies including a chemical application are also provided in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S. Amat, S. Busquier, M. Negra, Adaptive approximation of nonlinear operators. Numer. Funct. Anal. Optim. 25, 397–405 (2004)

    Google Scholar 

  2. I.K. Argyros, in Computational Theory of Iterative Methods, Series: Studies in Computational Mathematics, ed. by C.K. Chui, L. Wuytack (Elsevier Publ. Co., New York, 2007)

    Google Scholar 

  3. I.K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method. J. Complex. AMS 28, 364–387 (2012)

    Google Scholar 

  4. I.K. Argyros, Y.J. Cho, S. Hilout, Numerical Method for Equations and Its Applications (CRC Press, New York, 2012)

    Google Scholar 

  5. W.E. Bosarge, P.L. Falb, A multipoint method of third order. J. Optim. Thory Appl. 4, 156–166 (1969)

    Google Scholar 

  6. W.E. Bosarge, P.L. Falb, Infinite dimensional multipoint methods and the solution of two point boundary value problems. Numer. Math. 14, 264–286 (1970)

    Google Scholar 

  7. E. Cătinaş, On some iterative methods for solving nonlinear equations. ANTA 23(1), 47–53 (1994)

    Google Scholar 

  8. E. Cătinaş, The inexact, inexact perturbed, and quasi-Newton methods are equivalent models. Math. Comput. 74(249), 291–301 (2005)

    Google Scholar 

  9. S. Chandrasekhar, Radiative Transfer (Dover Publ, New York, 1960)

    Google Scholar 

  10. J.E. Dennis, Toward a unified convergence theory for Newtonlike methods, in Nonlinear Functional Analysis and Applications, ed. by L.B. Rall (Academic Press, New York, 1971), pp. 425–472

    Google Scholar 

  11. J.A. Ezquerro, M.A. Hernández, M.J. Rubio, Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. 115, 245–254 (2000)

    Google Scholar 

  12. J.A. Ezquerro, J.M. Gutiérrez, M.A. Hernández, N. Romero, M.J. Rubio, The Newton method: from Newton to Kantorovich (Spanish). Gac. R. Soc. Mat. Esp. 13(1), 53–76 (2010)

    Google Scholar 

  13. V.B. Gopalan, J.D. Seader, Application of interval Newton’s method to chemical engineering problems. Reliab. Comput. 1(3), 215–223 (1995)

    Google Scholar 

  14. W.B. Gragg, R.A. Tapia, Optimal error bounds for the Newton–Kantorovich theorem. SIAM J. Numer. Anal. 11, 10–13 (1974)

    Google Scholar 

  15. L.V. Kantorovich, G.P. Akilov, Functional Analysis (Pergamon Press, Oxford, 1982)

    Google Scholar 

  16. H.J. Kornstaedt, Ein allgemeiner Konvergenzstaz fr verschrfte Newton Verfahrem, ISNM, vol. 28 (Birkhaser, Basel, 1975), pp. 53–69

    Google Scholar 

  17. P. Laasonen, Ein überquadratich konvergenter iterativer algorithmus. Ann. Acad. Sci. Fenn. Ser. I(450), 1–10 (1969)

    Google Scholar 

  18. A.A. Magreñán, I.K. Argyros, Improved convergence analysis for newton-like methods. Numer. Algorithms, 1–23 (2015)

  19. G.J. Miel, The Kantorovich theorem with optimal error bounds. Am. Math. Mon. 86, 212–215 (1979)

    Google Scholar 

  20. G.J. Miel, An updated version of the Kantorovich theorem for Newton’s method. Computing 27, 237–244 (1981)

    Google Scholar 

  21. L.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic press, New York, 1970)

    Google Scholar 

  22. F.A. Potra, On a modified secant method. Rev. Anal. Numer. Theory Approx. 8, 203–214 (1979)

    Google Scholar 

  23. F.A. Potra, An application of the induction method of V. Ptak to the study of regula falsi. Apl. Mat. 26, 111–120 (1981)

    Google Scholar 

  24. F.A. Potra, On the Convergence of a Class of Newton-Like Methods. Iterative Solution of Nonlinear Systems of Equations, Lecture Notes in Math (Springer, Berlin, 1982), pp. 125–137

    Google Scholar 

  25. F.A. Potra, On the a posteriori error estimates for Newton’s method. Beitr. Zur Numer. Math. 12, 125–138 (1984)

    Google Scholar 

  26. F.A. Potra, Sharp error bounds for a class of Newton-like methods. Lib. Math. 5, 71–84 (1985)

    Google Scholar 

  27. F.A. Potra, V. Pták, Nondiscrete Induction and Iterative Processes, vol. 103, Research Notes in Mathematics (Pitman (Advanced Publishing Program), Boston, 1984)

    Google Scholar 

  28. P.D. Proinov, New general convergence theory for iterative processes and its applications to Newton–Kantorovich type theorems. J. Complex. 26, 3–42 (2010)

    Google Scholar 

  29. W.C. Rheinboldt, An Adaptive Continuation Process for Solving Systems of Nonlinear Equations, vol. 3 (Polish Academy of Science, Warsaw, 1977)

    Google Scholar 

  30. J.W. Schmidt, Untere Fehlerschranken fun Regula-Falsi Verhafren. Period Hung. 9, 241–247 (1978)

    Google Scholar 

  31. M. Shacham, An improved memory method for the solution of a nonlinear equation. Chem. Eng. Sci. 44, 1495–1501 (1989)

    CAS  Google Scholar 

  32. J.F. Traub, Iterative Method for Solutions of Equations (Prentice-Hall, New Jersey, 1964)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Universidad Internacional de La Rioja (UNIR, http://www.unir.net), under the Plan Propio de Investigación, Desarrollo e Innovación [2015–2017]. Research group: Modelación matemática aplicada a la ingeniería (MOMAIN), by the the grant SENECA 19374/PI/14 and by Ministerio de Ciencia y Tecnología MTM2014-52016-C2-\(\{01\}\)-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Alberto Magreñán.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This is one of several papers published together in Journal of Mathematical Chemistry on the “Special Issue: CMMSE”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magreñán, Á.A., Argyros, I.K. & Sicilia, J.A. New improved convergence analysis for Newton-like methods with applications. J Math Chem 55, 1505–1520 (2017). https://doi.org/10.1007/s10910-016-0727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0727-3

Keywords

Mathematics Subject Classification

Navigation