Journal of Mathematical Chemistry

, Volume 54, Issue 10, pp 1916–1941 | Cite as

Investigation of similarity and diversity threshold networks generated from diversity-oriented and focused chemical libraries

  • Ganesh Prabhu
  • Sudeepto Bhattacharya
  • Michael P. Krein
  • N. SukumarEmail author
Original Paper


Topological properties of chemical library networks, such as the average clustering coefficient, average path length, and existence of hubs, can serve as indicators to describe the inherent complexities of chemical libraries. We have used Diversity-Oriented Synthesis (DOS) and Focussed Libraries to investigate the appearance of scale-free properties and absence of small-world behavior in chemical libraries. DOS aims to elicit structural complexity in small compounds with respect to skeleton, functional groups, appendages and stereochemistry. Complexity here indicates incorporation of \(\hbox {sp}^{3}\) carbons, hydrogen bond acceptors and donors in the molecule. Biological studies have shown how structural complexity enhances the interaction of molecules with complex biological macromolecules. In contrast, Focussed Libraries concentrate on specific scaffolds against a specific biological target. We have quantified the diversity in several DOS and Focussed Libraries based on properties of similarity and dissimilarity threshold networks formed from them. Similarity and dissimilarity networks were generated from diverse chemical libraries at various Tanimoto similarity coefficients (\(\hbox {t}_{\mathrm{c}})\) using FP2 and MACCS fingerprints. The dissimilarity networks at very low \(\hbox {t}_{\mathrm{c}}\) threshold led to the absence of small-world behaviors, as evidenced by low average clustering coefficient and high average path length in comparison to Erdös–Renyi networks. Dissimilarity networks exhibit scale free topology as evidenced by a power law degree distribution. The similarity networks at high \(\hbox {t}_{\mathrm{c}}\) threshold have shown high clustering coefficients and low average path lengths, without the appearance of hubs. Combining dissimilarity and similarity threshold graphs revealed assortative and dissortative behaviors in the DOS libraries, leading to the conclusion that the vertices of the dissimilarity communities are more likely to share similarity edges, but it is quite unlikely for the vertices in a similarity community to share dissimilarity edges. We propose a simple and convenient diversity quantification tool, QuaLDI (Quantitative Library Diversity Index) to quantify the diversity in DOS and Focussed libraries. We anticipate that these topological properties can be used as descriptors to quantify the diversity in chemical libraries before proceeding for synthesis.


Dissimilarity Similarity Diversity Small-world Chemical space networks 


  1. 1.
    O. Raevsky, Mini-Rev. Med. Chem. 4, 1041 (2004)CrossRefGoogle Scholar
  2. 2.
    M.E.J. Newman, Phys. Rev. E 69, 066133 (2004)CrossRefGoogle Scholar
  3. 3.
    J. Hert, P. Willett, D.J. Wilton, J. Chem. Inf. Comput. Sci. 44, 1177 (2004)CrossRefGoogle Scholar
  4. 4.
    BioSolveIT, SciTegic (2007) Pipeline Pilot. (Accelrys Software, San Diego, CA) . Version 6.1.5Google Scholar
  5. 5.
    N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, J. Cheminf. 3, 33 (2011)CrossRefGoogle Scholar
  6. 6.
    RStudio Team, RStudio: Integrated Development for R (RStudio, Inc., Boston, MA, 2015),
  7. 7.
    D. Rogers, M. Hahn, J. Chem. Inf. Model. 50, 742 (2010)CrossRefGoogle Scholar
  8. 8.
    M.P. Krein, N. Sukumar, J. Phys. Chem. A 115, 12905 (2011)CrossRefGoogle Scholar
  9. 9.
    N. Sukumar, S. Das, M. Krein, R. Godawat, I. Vitol, S. Garde, K.P. Bennett, C.M. Breneman, Computational approaches, in Cheminformatics and Bioinformatics, ed. by R. Guha, A. Bender (Wiley, Hoboken, 2011), pp. 107–143CrossRefGoogle Scholar
  10. 10.
    R.W. Benz, S.J. Swamidass, P. Baldi, J. Chem. Inf. Model. 48, 1138 (2008)CrossRefGoogle Scholar
  11. 11.
    T.G. Lewis, Network Science: Theory and Applications (Wiley, Hoboken, 2009)CrossRefGoogle Scholar
  12. 12.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)CrossRefGoogle Scholar
  13. 13.
    A.L. Barabasi, R. Albert, Science 286, 509 (1999)CrossRefGoogle Scholar
  14. 14.
    C. Qian, C. Hyunseok, R. Govindan, S. Jamin, IEEE Infocom. 2, 608 (2002)Google Scholar
  15. 15.
    H. Jeong, S.P. Mason, A.L. Barabasi, Z.N. Oltvai, Nature 411, 41 (2001)CrossRefGoogle Scholar
  16. 16.
    G.F. Davis, M. Yoo, W.E. Baker, Strateg. Organ. 1, 301 (2003)CrossRefGoogle Scholar
  17. 17.
    J.I. Perotti, F.A. Tamarit, S.A. Cannas, Phys. A 371, 71 (2006)CrossRefGoogle Scholar
  18. 18.
    T. Kodadek, Curr. Opin. Chem. Biol. 14, 713 (2010)CrossRefGoogle Scholar
  19. 19.
    J.Y. Ortholand, A. Ganesan, Curr. Opin. Chem. Biol. 8, 271 (2004)CrossRefGoogle Scholar
  20. 20.
    P. Willett, Inform. Res. 2, 3 (1996)Google Scholar
  21. 21.
    D.K. Agrafiotis, V.S. Lobanov, J. Chem. Inf. Model. 39, 51 (1999)Google Scholar
  22. 22.
    E.A. Wintner, C.C. Moallemi, J. Med. Chem. 43, 1993 (2000)CrossRefGoogle Scholar
  23. 23.
    H.M. Patel, M.N. Noolvi, P. Sharma, V. Jaiswal, S. Bansal, S. Lohan, S.S. Kumar, V. Abbot, S. Dhiman, V. Bhardwaj, Med. Chem. Res. 23, 4991–5007 (2014)CrossRefGoogle Scholar
  24. 24.
    S.L. Schreiber, Science 287, 1964 (2000)CrossRefGoogle Scholar
  25. 25.
    A. Grossmann, S. Bartlett, M. Janecek, J.T. Hodgkinson, D.R. Spring, Angew. Chem. 53, 13093 (2014)CrossRefGoogle Scholar
  26. 26.
    B. M. Ibbeson, L. Laraia, E. Alza, C.J. O’Connor, Y. S. Tan, H.M.L. Davies, G. McKenzie, A. R. Venkitaraman, D.R. Spring, Nature Comm. 5, 3155 (2014)Google Scholar
  27. 27.
    V.S. Damerla, C. Tulluri, R. Gundla, L. Naviri, U. Adepally, P.S. Iyer, Y.L. Murthy, N. Prabhakar, S. Sen, Chem. Asian J. 7, 2351 (2012)CrossRefGoogle Scholar
  28. 28.
    R. Mamidala, V.S. Babu Damerla, R. Gundla, M.T. Chary, Y.L.N. Murthy, S. Sen, RSC Adv. 4, 10619 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Cruz-Monteagudo, F. Borges, M. Perez Gonzalez, M.N. Cordeiro, Bioorg. Med. Chem. 15, 5322 (2007)CrossRefGoogle Scholar
  30. 30.
    J.L. Durant, B.A. Leland, D.R. Henry, J.G. Nourse, J. Chem. Inf. Comput. Sci. 42, 1273 (2002)CrossRefGoogle Scholar
  31. 31.
    G. Csardi, T. Nepusz, InterJournal Complex Syst. 1695 (2006).
  32. 32.
    M. Zwierzyna, M. Vogt, G.M. Maggiora, J. Bajorath, J. Comput.-Aided Molec. Des. 29, 113 (2015)CrossRefGoogle Scholar
  33. 33.
    R.D. Luce, A.D. Perry, Psychometrika 14, 95 (1949)CrossRefGoogle Scholar
  34. 34.
    P. Erdös, A. Renyi, Pub. Math. 6, 290 (1959)Google Scholar
  35. 35.
    M.E.J. Newman, Phys. Rev. E 67, 02616 (2003)CrossRefGoogle Scholar
  36. 36.
    M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)CrossRefGoogle Scholar
  37. 37.
    A. Clauset, M.E.J. Newman, C. Moore, Phys. Rev. E 70, 066111 (2004)CrossRefGoogle Scholar
  38. 38.
    M. Girvan, M.E. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)CrossRefGoogle Scholar
  39. 39.
    M.E.J. Newman, Phys. Rev. E 74, 036104 (2006)CrossRefGoogle Scholar
  40. 40.
    P. Pons, M. Latapy, J. Graph Algorithms Applic. 10, 191 (2006)CrossRefGoogle Scholar
  41. 41.
    M.E.J. Newman, Contemp. Phys. 46, 323 (2005).
  42. 42.
    A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51(4), 661 (2009)CrossRefGoogle Scholar
  43. 43.
    D.L. Evans, J.H. Drew, L.M. Leemis, Comm. Stat. - Simul. Comput. 37, 1396 (2008)CrossRefGoogle Scholar
  44. 44.
    K. Wu, N. Sukumar, N. Lanzillo, C. Wang, R. Ramprasad, R. Ma, A.F. Baldwin, G. Sotzing, C.M. Breneman, J. Polymer Sci. B: Polymer Phys. (2016, in press)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ChemistryShiv Nadar UniversityDadriIndia
  2. 2.Department of Mathematics and Center for InformaticsShiv Nadar UniversityDadriIndia
  3. 3.Lockheed-Martin Advanced Technology LaboratoriesCherry HillUSA
  4. 4.Department of Chemistry and Center for InformaticsShiv Nadar UniversityDadriIndia

Personalised recommendations