Journal of Mathematical Chemistry

, Volume 54, Issue 7, pp 1404–1416 | Cite as

Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation

  • Ioannis K. Argyros
  • Á. Alberto MagreñánEmail author
  • Lara Orcos
Original Paper


We present a local convergence analysis of a derivative free fourth order method with one parameter based on rational interpolation in order to approximate a locally unique root of a function. The method is optimal in the sense of Traub. In earlier studies such as Steffensen (Scand Actuar J 16(1):64–72, 1933) and Zafer et al. (Sci World J, 2015. doi: 10.1155/2015/934260) the convergence was based on hypotheses on the third derivative or even higher. We extend the applicability of theses methods using only the first derivative. Moreover, we provide computable radii and error bounds based on Lipschitz constants. Furthermore, the dynamics of this method are studied in order to find the best choice of the parameter in terms of convergence. An application is also presented in this study.


Fourth order method Rational interpolation Local convergence Divided difference Dynamics 

Mathematics Subject Classification

65D10 65D99 



This work is partially funded by UNIR Research (, Universidad Internacional de La Rioja (UNIR,, under the Research Support Strategy 3 [2015-2017], Research Group: MOdelación Matemática Aplicada a la INgeniería (MOMAIN), by the Grant SENECA 19374/PI/14 and by the project MTM2014-52016-C2-1-P of the Spanish Ministry of Economy and Competitiveness.


  1. 1.
    S. Amat, S. Busquier, S. Plaza, Dynamics of the King and Jarratt iterations. Aequationes Math. 69(3), 212–223 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Amat, S. Busquier, S. Plaza, Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366(1), 24–32 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Amat, M.A. Hernández, N. Romero, A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206(1), 164–174 (2008)Google Scholar
  4. 4.
    I.K. Argyros, Convergence and Application of Newton-Type Iterations (Springer, Berlin, 2008)Google Scholar
  5. 5.
    I.K. Argyros, S. Hilout, Numerical Methods in Nonlinear Analysis (World Scientific Publ. Comp, New Jersey, 2013)Google Scholar
  6. 6.
    I.K. Argyros, D. González, Local convergence for an improved Jarratt-type method in banach space. Int. J. Artif. Intell. Interact. Multimed. 3(Special Issue on Teaching Mathematics Using New and Classic Tools), 20–25 (2015)Google Scholar
  7. 7.
    I.K. Argyros, S. George, Ball convergence for Steffensen-type fourth-order methods. Int. J. Artif. Intell. Interact. Multimed. 3(Special Issue on Teaching Mathematics Using New and Classic Tools), 37–42 (2015)Google Scholar
  8. 8.
    R. Behl, Development and analysis of some new iterative methods for numerical solutions of nonlinear equations. PhD Thesis, Punjab University (2013)Google Scholar
  9. 9.
    D.D. Bruns, J.E. Bailey, Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32(1), 257–264 (1977)CrossRefGoogle Scholar
  10. 10.
    V. Candela, A. Marquina, Recurrence relations for rational cubic methods I: the Halley method. Computing 44, 169–184 (1990)CrossRefGoogle Scholar
  11. 11.
    V. Candela, A. Marquina, Recurrence relations for rational cubic methods II: the Chebyshev method. Computing 45(4), 355–367 (1990)CrossRefGoogle Scholar
  12. 12.
    C. Chun, B. Neta, S. Kim, On Jarratt’s family of optimal fourth-order iterative methods and their dynamics. Fractals 22(04), 1450013 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of a family of Chebyshev–Halley type methods. Appl. Math. Comput. 219, 8568–9583 (2013)Google Scholar
  14. 14.
    J.A. Ezquerro, M.A. Hernández, Recurrence relations for Chebyshev-type methods. Appl. Math. Optim. 41(2), 227–236 (2000)CrossRefGoogle Scholar
  15. 15.
    J.A. Ezquerro, M.A. Hernández, New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)CrossRefGoogle Scholar
  16. 16.
    J.A. Ezquerro, M.A. Hernández, On the R-order of the Halley method. J. Math. Anal. Appl. 303, 591–601 (2005)CrossRefGoogle Scholar
  17. 17.
    A. Fraile, E. Larrodé, Á.A. Magreñán, J.A. Sicilia, Decision model for siting transport and logistic facilities in urban environments: a methodological approach. J. Comput. Appl. Math. 291, 478–487 (2016)Google Scholar
  18. 18.
    V.B. Gopalan, J.D. Seader, Application of interval Newton’s method to chemical engineering problems. Reliab. Comput. 1(3), 215–223 (1995)CrossRefGoogle Scholar
  19. 19.
    J.M. Gutiérrez, M.A. Hernández, Recurrence relations for the super-Halley method. Comput. Math. Appl. 36(7), 1–8 (1998)CrossRefGoogle Scholar
  20. 20.
    M.A. Hernández, Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3–4), 433–455 (2001)CrossRefGoogle Scholar
  21. 21.
    M.A. Hernández, M.A. Salanova, Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. Southwest J. Pure Appl. Math. 1, 29–40 (1999)Google Scholar
  22. 22.
    P. Jarratt, Some fourth order multipoint methods for solving equations. Math. Comput. 20(95), 434–437 (1966)CrossRefGoogle Scholar
  23. 23.
    J. Kou, X. Wang, Semilocal convergence of a modified multi-point Jarratt method in Banach spaces under general continuity conditions. Numer. Algorithms 60, 369–390 (2012)CrossRefGoogle Scholar
  24. 24.
    Á.A. Magreñán, J.M. Gutiérrez, Real dynamics for damped Newtons method applied to cubic polynomials. J. Comput. Appl. Math. 275, 527–538 (2015)CrossRefGoogle Scholar
  25. 25.
    Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)Google Scholar
  26. 26.
    Á.A. Magreñán, A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014)Google Scholar
  27. 27.
    M. Petković, B. Neta, L. Petković, J. Džunić, Multipoint Methods for Solving Nonlinear Equations (Elsevier, Amsterdam, 2013)Google Scholar
  28. 28.
    L.B Rall, Computational Solution of Nonlinear Operator Equations, ed. by Robert E. Krieger (New York, 1979)Google Scholar
  29. 29.
    H. Ren, Q. Wu, W. Bi, New variants of Jarratt method with sixth-order convergence. Numer. Algotithms 52(4), 585–603 (2009)CrossRefGoogle Scholar
  30. 30.
    W.C. Rheinboldt, An Adaptive Continuation Process for Solving Systems of Nonlinear Equations, vol. 3 (Polish Academy of Science, Banach Center Publication, Warsaw, 1978)Google Scholar
  31. 31.
    M. Shacham, An improved memory method for the solution of a nonlinear equation. Chem. Eng. Sci. 44, 1495–1501 (1989)CrossRefGoogle Scholar
  32. 32.
    F. Silva, C. Analide, P. Novais, Assessing road traffic expression. Int. J. Artif. Intell. Interact. Multimed. 3(1), 20–27 (2014)Google Scholar
  33. 33.
    J.F. Steffensen, Remarks on iterations. Scand. Actuar. J. 16(1), 64–72 (1933)CrossRefGoogle Scholar
  34. 34.
    J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall Series in Automatic Computation, Englewood Cliffs, 1964)Google Scholar
  35. 35.
    S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000)CrossRefGoogle Scholar
  36. 36.
    F. Zafar, N. Yasmin, S. Akram, A general class of derivative free root finding methods based on rational interpolation. Sci. World J. (2015). doi: 10.1155/2015/934260. Article ID: 934260

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ioannis K. Argyros
    • 1
  • Á. Alberto Magreñán
    • 2
    Email author
  • Lara Orcos
    • 2
  1. 1.Department of Mathematics SciencesCameron UniversityLawtonUSA
  2. 2.Universidad Internacional de La RiojaLogroñoSpain

Personalised recommendations