Journal of Mathematical Chemistry

, Volume 54, Issue 5, pp 1072–1082

# A new approach for solving a model for HIV infection of $$\mathbf{CD4}^{+}\,\mathbf{T}$$-cells arising in mathematical chemistry using wavelets

Original Paper

## Abstract

In this paper, the Legendre wavelet method for solving a model for HIV infection of $$\hbox {CD}4^{+}\,\hbox {T}$$-cells is studied. The properties of Legendre wavelets and its operational matrices are first presented and then are used to convert into algebraic equations. Also the convergence and error analysis for the proposed technique have been discussed. Illustrative examples have been given to demonstrate the validity and applicability of the technique. The efficiency of the proposed method has been compared with other traditional methods and it is observed that the Legendre wavelet method is more convenient than the other methods in terms of applicability, efficiency, accuracy, error, and computational effort.

## Keywords

Legendre wavelets HIV infection CD$$4^{+}$$ T-cells Convergence analysis Operational matrix

## References

1. 1.
A.S. Perelson, Modelling the interaction of the immune system with HIV, in Mathematical and statistical approaches to AIDS epidemiology, ed. by C. Castillo-Chavez (Springer, Berlin, 1989), p. 350
2. 2.
A.S. Perelson, D.E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4$$^{+}$$ T-cells. Math. Biosci. 114, 81 (1993)
3. 3.
R.V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD4$$^{+}$$ T-cells. Math. Biosci. 165, 27–39 (2000)
4. 4.
S. Yüzbas, A numerical approach to solve the model for HIV infection of CD4$$^{+}$$ T cells. Appl. Math. Model. 36, 5876–5890 (2012)
5. 5.
A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-I dynamics in vivo. SIAM Rev. 41(1), 3–44 (1999)
6. 6.
L. Wang, M.Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4$$^{+}$$ T cells. Math. Biosci. 200, 44–57 (2006)
7. 7.
B. Asquith, C.R.M. Bangham, The dynamics of T-cell fratricide: application of a robust approach to mathematical modelling in immunology. J. Theor. Biol. 222, 53–69 (2003)
8. 8.
M. Nowak, R. May, Mathematical biology of HIV infections: antigenic variation and diversity threshold. Math. Biosci. 106, 1–21 (1991)
9. 9.
W. Liancheng, Y.L. Michael, Mathematical analysis of the global dynamics of a model for HIV infection of CD4$$^{+}$$ T cells. Math. Biosci. 200, 44–57 (2006)
10. 10.
B. Asquith, C.R.M. Bangham, The dynamics of T-cell fratricide: application of a robust approach to mathematical modeling in immunology. J Theor. Biol. 222, 53–69 (2003)
11. 11.
A.A.M. Arafa, S.Z. Rida, M. Khalil, Fractional modeling dynamics of HIV and CD4$$^{+}$$ T-cells during primary infection. Nonlinear Biomed Phys. 6(1), 1–7 (2012)Google Scholar
12. 12.
M.Y. Ongun, The Laplace adomian decomposition method for solving a model for HIV infection of CD4$$^{+}$$ T cells. Math. Comput. Model. 53(5–6), 597–603 (2011)
13. 13.
S. Yuzbasi, A numerical approach to solve the model for HIV infection of CD4$$^{+}$$ T cells. Appl. Math. Model. 36(12), 5876–5890 (2012)
14. 14.
N. Dogan, Numerical treatment of the model for HIV infection of CD4$$^{+}$$ T cells by using multistep Laplace adomian decomposition method. Discrete Dyn. Nat. Soc., Article ID 976352, 11 pages (2012)Google Scholar
15. 15.
M. Merdan, Homotopy perturbation method for solving a Model for HIV infection of CD4$$^{+}$$ T cells. Istanb. Commerce Univ. J. Sci. 6, 39–52 (2007)Google Scholar
16. 16.
Y. Khan, Q. Wu, H. Vazquez-Leal, An efficient iterated method for mathematical biology model. Neural Comput. Appl. 23, 677–682 (2013)
17. 17.
M. Ghoreishi, AIBMd Ismail, A.K. Alomari, Application of the homotopy analysis method for solving a model for HIV infection of CD4$$^{+}$$ T-cells. Math. Comput. Model. 54, 3007–3015 (2011)
18. 18.
M.Y. Ongun, The Laplace adomian decomposition method for solving a model for HIV infection of CD4$$^{+}$$ T cells. Math. Comput. Model. 53, 597–603 (2011)
19. 19.
M. Merdan, A. Gökdogan, A. Yildirim, On the numerical solution of the model for HIV infection of CD4$$^{+}$$ T cells. Comput. Math. Appl. 62, 118–123 (2011)
20. 20.
V.K. Srivastava, M.K. Awasthi, S. Kumar, Numerical approximation for HIV infection of CD4$$^{+}$$ T cells mathematical model. Ain Shams Eng. J. 5(2), 625–629 (2014)
21. 21.
A. Gökdogan, M. Merdan, A multistage Homotopy perturbation method for solving human T-cell lymphotropic virus I (HTLV-I) infection of CD4$$^{+}$$ T-cells model. Middle East J. Sci. Res. 9(4), 503–509 (2011)Google Scholar
22. 22.
A. Gökdogan, A. Yildirimb, M. Merdan, Solving a fractional order model of HIV infection of CD4$$^{+}$$ T cells. Math. Comput. Model. 54, 2132–2138 (2011)
23. 23.
M. Razzagi, S. Yousefi, Legendre wavelets method for the solution of nonlinear problems in the calculus of variations. Math. Comput. Model. 34, 45–54 (2001)
24. 24.
S. Yousefi, M. Razzagi, Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations. Math. Comput. Simul. 70, 1–8 (2005)
25. 25.
S.A. Yousefi, Legendre scaling function for solving generalized Emden–Fowler equation. Int. J. Inf. Sys. Sci. 3, 243–250 (2007)Google Scholar
26. 26.
S.A. Yousefi, Legendre wavelets method for solving differential equations of Lane–Emden type. Appl. Math. Comput. 181, 1417–1422 (2006)
27. 27.
S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, The Legendre wavelet method for solving initial value problems of Bratu-type. Comput. Math. Appl. 63, 1287–1295 (2012)
28. 28.
S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, K. Kannan, Convergence analysis of Legendre wavelets method for solving Fredholm integral equations. Appl. Math. Sci. 6, 2289–2296 (2012)Google Scholar
29. 29.
S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, Legendre approximation solution for a class of higher-order Volterra integro-differential equations. Ain Shams Eng. J. 3, 417–422 (2012)
30. 30.
S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, Legendre wavelets based approximation method for Cauchy problems. Appl. Math. Sci. 6, 6281–6286 (2012)Google Scholar
31. 31.
S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, Legendre wavelets based approximation method for solving advection problems. Ain Shams Eng. J. 4, 925–932 (2013)
32. 32.
S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, K. Kannan, Wavelet solution for class of nonlinear integro-diferential equations. Indian J. Sci. Technol. 6(6), 4670–4677 (2013)Google Scholar
33. 33.
S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, K. Kannan, Legendre wavelet method for the singular system of transistor circuits. Int. J. Appl. Eng. Res. 9, 213–221 (2014)Google Scholar
34. 34.
M. Razzagi, S. Yousefi, The Legendre wavelet operational matrix of integration. Int. J. Syst. Sci. 32(4), 495–502 (2001)
35. 35.
J.S. Gu, W.S. Jiang, The Haar wavelets operational matrix of integration. Int. J. Syst. Sci. 27, 623–628 (1996)
36. 36.
M. Behroozifar, S.A. Yousefi, A. Ranjbar, Numerical solution of optimal control of time-varying singular systems via operational matrices. Int. J. Eng. 27, 523–532 (2014)Google Scholar
37. 37.
P.A. Regalia, S.K. Mitra, Kronecker product, unitary matrices and signal processing applications. SIAM 31, 586–613 (1989)

© Springer International Publishing Switzerland 2016

## Authors and Affiliations

• S. G. Venkatesh
• 1
Email author
• S. Raja Balachandar
• 1
• S. K. Ayyaswamy
• 1
• K. Balasubramanian
• 1
1. 1.Department of Mathematics, School of Humanities and SciencesSASTRA UniversityThanjavurIndia