Journal of Mathematical Chemistry

, Volume 53, Issue 5, pp 1195–1206 | Cite as

Kirchhoff index of periodic linear chains

  • A. Carmona
  • A. M. Encinas
  • M. MitjanaEmail author
Original Paper


A periodic linear chain consists of a weighted \(2n\)-path where new edges have been added following a certain periodicity. In this paper, we obtain the effective resistance and the Kirchhoff index of a periodic linear chain as non trivial functions of the corresponding expressions for the path. We compute the expression of the Kirchhoff index of any homogeneous and periodic linear chain which generalizes the previously known results for ladder-like and hexagonal chains, that correspond to periods one and two respectively.


Kirchhoff index Periodic linear chain Effective resistance 


  1. 1.
    A. Carmona, A.M. Encinas, M. Mitjana, Green matrices associated with generalized linear polyominoes. Linear Algebra Appl. 468, 38–47 (2015)Google Scholar
  2. 2.
    A. Carmona, A.M. Encinas, M. Mitjana, Effective resistances for ladder-like chains. Int. J. Quantum Chem. 114, 1670–1677 (2014)Google Scholar
  3. 3.
    D.J. Klein, M. Randi\(\grave{{\rm c}}\), Resistance distance. J. Math. Chem. 12, 81–95 (1993)Google Scholar
  4. 4.
    J.C. Mason, D.C. Handscomb, Chebyshev Polynomials (Chapman and Hall/CRC, London, 2003)Google Scholar
  5. 5.
    W. Xiao, I. Gutman, Resistance distance and Laplacian spectrum. Theor. Chem. Acc. 110, 284–289 (2003)CrossRefGoogle Scholar
  6. 6.
    Y. Yang, H. Zhang, Kirchhoff index of linear hexagonal chains. Int. J. Quantum Chem. 108, 503–512 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Zhang, Y. Yang, C. Li, Kirchhoff index of composite graphs. Discrete Appl. Math. 157, 2918–2927 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departament de Matemàtica Aplicada IIIUPC BarcelonaTechBarcelonaSpain
  2. 2.Departament de Matemàtica Aplicada IUPC BarcelonaTechBarcelonaSpain

Personalised recommendations