Advertisement

Journal of Mathematical Chemistry

, Volume 53, Issue 2, pp 590–603 | Cite as

Coulomb repulsion, point-like nuclear charges, Dirac paradox, soft nuclear charge density and hypermultiplet nuclear repulsion

  • Ramon Carbó-DorcaEmail author
Original Paper

Abstract

A discussion about the classical Coulomb repulsion via point-like nuclear charges, usually employed within Born–Oppenheimer approximation, leads to the description of Dirac paradox: an inconsistency found when describing nuclear charges by means of Dirac’s distributions and computing with them nuclear Coulomb repulsion integrals. The way of overcoming Dirac paradox is bound to the description of soft Gaussian nuclear charge density and also to adopting a nuclear hypermultiplet Coulomb repulsion formulation. Such theoretical prospect produces a quantum mechanically compliant but simple algorithm in order to compute nuclear repulsion, which also appears to be consistently related to classical Coulomb repulsion energy, while avoiding singularities when nuclei collapse.

Keywords

Point-like nuclear charges Molecular Coulomb classical nuclear repulsion Soft Gaussian nuclear charge density Dirac paradox Hypermultiplet quantum mechanical nuclear Coulomb repulsion 

References

  1. 1.
    M. Born, R. Oppenheimer, Ann. Phys. 84, 457–484 (1927)CrossRefGoogle Scholar
  2. 2.
    D. Andrae, Phys. Rep. 336, 413–525 (2000)CrossRefGoogle Scholar
  3. 3.
    E. Besalú, R. Carbó-Dorca, J. Math. Chem. 49, 2231–2243 (2011)CrossRefGoogle Scholar
  4. 4.
    R. Carbó-Dorca, J. Math. Chem. 51, 1092–1098 (2013)CrossRefGoogle Scholar
  5. 5.
    Ll Amat, R. Carbó-Dorca, J. Comput. Chem 18, 2023–2029 (1997)CrossRefGoogle Scholar
  6. 6.
    Ll Amat, R. Carbó-Dorca, J. Comput. Chem. 20, 911–920 (1999)CrossRefGoogle Scholar
  7. 7.
    Ll Amat, R. Carbó-Dorca, J. Chem. Inf. Comput. Chem. Sci 40, 1188–1198 (2000)CrossRefGoogle Scholar
  8. 8.
    E. Besalú, R. Carbó-Dorca, J. Mol. Graph. Mod. 39, 39–49 (2013)CrossRefGoogle Scholar
  9. 9.
    E. Besalú, R. Carbó-Dorca, J. Math. Chem. 51, 1771–1783 (2013)CrossRefGoogle Scholar
  10. 10.
    R. Carbó-Dorca, Indian J. Chem. 53A, 1043–1051 (2014)Google Scholar
  11. 11.
    H. Weinstein, P. Politzer, S. Srebrenik, Theor. Chim. Acta 38, 159–163 (1975)CrossRefGoogle Scholar
  12. 12.
    V.R. Saunders, in Computational Techniques in Quantum Chemistry and Molecular Physics, ed. by G.H.F. Diercksen, B.T. Sutcliffe, A. Veillard (D. Reidel Pub. Co., Dordrecht (Holland), 1975)Google Scholar
  13. 13.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Pub. Inc., New York, 1972)Google Scholar
  14. 14.
    R. Carbó, L. Domingo, J. Gregori, Int. J. Quant. Chem. 17, 725–736 (1980)CrossRefGoogle Scholar
  15. 15.
    W. Heisenberg, Zeits. Phys. 49, 619–636 (1928)CrossRefGoogle Scholar
  16. 16.
    C.C.J. Roothaan, Rev. Mod. Phys. 23, 69–89 (1951)CrossRefGoogle Scholar
  17. 17.
    J. Arents, Chem. Phys. Lett. 12, 489–492 (1972)CrossRefGoogle Scholar
  18. 18.
    P.W. Ayers, Theor. Chem. Acc. 115, 253–256 (2006)CrossRefGoogle Scholar
  19. 19.
    P.W. Ayers, R.G. Parr, J. Am. Chem. Soc. 123, 2007–2017 (2001)CrossRefGoogle Scholar
  20. 20.
    J.S.M. Anderson, J. Melin, P.W. Ayers, J. Chem. Theory Comput. 3, 358–374 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Facultat de Ciències, Institut de Química Computacional i CatàlisiUniversitat de GironaGironaSpain

Personalised recommendations