Advertisement

Journal of Mathematical Chemistry

, Volume 53, Issue 1, pp 58–85 | Cite as

A fast algorithm for the construction of integrity bases associated to symmetry-adapted polynomial representations: application to tetrahedral \(\mathrm {XY_4}\) molecules

  • Patrick Cassam-ChenaïEmail author
  • Guillaume Dhont
  • Frédéric Patras
Original Paper
  • 99 Downloads

Abstract

Invariant theory provides more efficient tools, such as Molien generating functions and integrity bases, than basic group theory, that relies on projector techniques, for the construction of symmetry-adapted polynomials in the symmetry coordinates of a molecular system, because it is based on a finer description of the mathematical structure of the latter polynomials. The present article extends its use to the construction of polynomial bases which span possibly, non-totally symmetric irreducible representations of a molecular symmetry group. Electric or magnetic observables can carry such irreducible representations, a common example is given by the electric dipole moment surface. The elementary generating functions and their corresponding integrity bases, where both the initial and the final representations are irreducible, are the building blocks of the algorithm presented in this article, which is faster than algorithms based on projection operators only. The generating functions for the full initial representation of interest are built recursively from the elementary generating functions. Integrity bases which can be used to generate in the most economical way symmetry-adapted polynomial bases are constructed alongside in the same fashion. The method is illustrated in detail on \(\mathrm {XY_4}\) type of molecules. Explicit integrity bases for all five possible final irreducible representations of the tetrahedral group have been calculated and are given in the supplemental material associated with this paper.

Keywords

Integrity basis Covariant Tetrahedral group Methane Molien series 

Notes

Acknowledgments

Financial support for the project Application de la Théorie des Invariants à la Physique Moléculaire via a CNRS grant Projet Exploratoire Premier Soutien (PEPS) Physique Théorique et Interfaces (PTI) is acknowledged. The first and third authors also acknowledge support from the grant CARMA ANR-12-BS01-0017.

Supplementary material

10910_2014_410_MOESM1_ESM.txt (694 kb)
ESM 1 (txt 694 kb)

References

  1. 1.
    E.B. Wilson Jr, J.C. Decius, P.C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Dover Publications, Mineola, 1980)Google Scholar
  2. 2.
    W.G. Harter, Principles of Symmetry, Dynamics, and Spectroscopy, Wiley-Interscience publication (J. Wiley, 1993)Google Scholar
  3. 3.
    P.R. Bunker, P. Jensen, Fundamentals of Molecular Symmetry, Series in Chemical Physics (Institute of Physics, Bristol, 2005)Google Scholar
  4. 4.
    P.R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy, 2nd edn. (NRC Research Press, Ottawa, 1998)Google Scholar
  5. 5.
    B.I. Zhilinskií, Phys. Rep. 341, 85 (2001)CrossRefGoogle Scholar
  6. 6.
    H. Weyl, The Classical Groups. Their Invariants and Representations (Princeton University Press, Princeton, 1939)Google Scholar
  7. 7.
    R. Marquardt, K. Sagui, Mol. Phys. 105, 1157 (2007)CrossRefGoogle Scholar
  8. 8.
    D.W. Schwenke, H. Partridge, Spectrochim. Acta A 57, 887 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Hamermesh, Group Theory and Its Application to Physical Problems (Dover Publications, New York, 1989) unabridged, corrected Dover (1989) republication of the edition published by Addison-Wesley Publishing Company Inc, Reading, Mass (1962)Google Scholar
  10. 10.
    J.S. Lomont, Applications of Finite Groups (Academic Press, New York, 1959)Google Scholar
  11. 11.
    P.R. Taylor, in Lecture Notes in Quantum Chemistry. European Summer School in Quantum Chemistry (Springer, 1992), pp. 89–176Google Scholar
  12. 12.
    J.P. Champion, G. Pierre, F. Michelot, J. Moret-Bailly, Can. J. Phys. 55, 512 (1977)CrossRefGoogle Scholar
  13. 13.
    J. Moret-Bailly, L. Gautier, J. Montagutelli, J. Mol. Spectrosc. 15, 355 (1965)CrossRefGoogle Scholar
  14. 14.
    V. Boudon, J.-P. Champion, T. Gabard, M. Loëte, F. Michelot, G. Pierre, M. Rotger, C. Wenger, M. Rey, J. Mol. Spectrosc. 228, 620 (2004), special Issue Dedicated to Dr. Jon T. Hougen on the Occasion of His 68th BirthdayGoogle Scholar
  15. 15.
    A.V. Nikitin, M. Rey, V.G. Tyuterev, Chem. Phys. Lett. 501, 179 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Michel, B.I. Zhilinskií, Phys. Rep. 341, 11 (2001)CrossRefGoogle Scholar
  17. 17.
    P. Cassam-Chenaï, F. Patras, J. Math. Chem. 44, 938 (2008)CrossRefGoogle Scholar
  18. 18.
    A.J.C. Varandas, J.N. Murrell, Chem. Phys. Lett. 84, 440 (1981)CrossRefGoogle Scholar
  19. 19.
    A. Schmelzer, J.N. Murrell, Int. J. Quantum Chem. 28, 287 (1985)CrossRefGoogle Scholar
  20. 20.
    M.A. Collins, D.F. Parsons, J. Chem. Phys. 99, 6756 (1993)CrossRefGoogle Scholar
  21. 21.
    J. Ischtwan, S.D. Peyerimhoff, Int. J. Quantum Chem. 45, 471 (1993)CrossRefGoogle Scholar
  22. 22.
    X. Huang, B.J. Braams, J.M. Bowman, J. Chem. Phys. 122, 044308 (2005)CrossRefGoogle Scholar
  23. 23.
    B.J. Braams, J.M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009)CrossRefGoogle Scholar
  24. 24.
    Z. Xie, J.M. Bowman, J. Chem. Theory Comput. 6, 26 (2010)CrossRefGoogle Scholar
  25. 25.
    G. Dhont, B.I. Zhilinskií, J. Phys. A: Math. Theor. 46, 455202 (2013)CrossRefGoogle Scholar
  26. 26.
    B. Sturmfels, Algorithms in Invariant Theory, 2nd edn. (Springer, New York, 2008)Google Scholar
  27. 27.
    N.J.A. Sloane, Am. Math. Mon. 84, 82 (1977)CrossRefGoogle Scholar
  28. 28.
    A.G. McLellan, J. Phys. C: Solid State Phys. 7, 3326 (1974)CrossRefGoogle Scholar
  29. 29.
    A.G. McLellan, J. Phys. C: Solid State Phys. 12, 753 (1979)CrossRefGoogle Scholar
  30. 30.
    A.S. Wineman, A.C. Pipkin, Arch. Ration. Mech. Anal. 17, 184 (1964)CrossRefGoogle Scholar
  31. 31.
    R.S. Rivlin, Ing. Arch. 49, 325 (1980)CrossRefGoogle Scholar
  32. 32.
    A. Thionnet, C. Martin, Int. J. Solids Struct. 43, 325 (2006)CrossRefGoogle Scholar
  33. 33.
    G. Sartori, G. Valente, J. Phys. A: Math. Gen. 36, 1913 (2003)CrossRefGoogle Scholar
  34. 34.
    G. Sartori, V. Talamini, J. Math. Phys. 39, 2367 (1998)CrossRefGoogle Scholar
  35. 35.
    D.V. Coelho, J. Brandão, J. Math. Chem. 52, 646 (2014)CrossRefGoogle Scholar
  36. 36.
    R.C. King, T.A. Welsh, P.D. Jarvis, J. Phys. A: Math. Theor. 40, 10083 (2007)CrossRefGoogle Scholar
  37. 37.
    R.C. King, T.A. Welsh, J. Phys. Conf. Ser. 30, 1 (2006)CrossRefGoogle Scholar
  38. 38.
    M. Brion, Annales scientifiques de l’Ecole Normale Supérieure, \(4^{{\rm e}}\) série 26, 1 (1993)Google Scholar
  39. 39.
    M. Van Den Bergh, In Proceedings of the International Congress of Mathematicians, Zürich, Switzerland 1994 (Birkhäuser Verlag, Basel, Switzerland, 1995) pp. 352-362Google Scholar
  40. 40.
    G. Dhont, B. Zhilinskií, P. Cassam-Chenaï, F. Patras, In preparationGoogle Scholar
  41. 41.
    D.L. Gray, A.G. Robiette, Mol. Phys. 37, 1901 (1979)CrossRefGoogle Scholar
  42. 42.
    T.J. Lee, J.M.L. Martin, P.R. Taylor, J. Chem. Phys. 102, 254 (1995)CrossRefGoogle Scholar
  43. 43.
    J. Duncan, I. Mills, Spectrochim. Acta 20, 523 (1964)CrossRefGoogle Scholar
  44. 44.
    C. Oyanagi, K. Yagi, T. Taketsugu, K. Hirao, J. Chem. Phys. 124, 064311 (2006)CrossRefGoogle Scholar
  45. 45.
    P. Cassam-Chenaï, Y. Bouret, M. Rey, S.A. Tashkun, A.V. Nikitin, V.G. Tyuterev, Int. J. Quantum Chem. 112, 2201 (2012)CrossRefGoogle Scholar
  46. 46.
    P. Cassam-Chenaï, J. Liévin, J. Chem. Phys. 136, 174309 (2012)CrossRefGoogle Scholar
  47. 47.
    P. Cassam-Chenaï, J. Liévin, J. Mol. Spectrosc. 291, 77 (2013)CrossRefGoogle Scholar
  48. 48.
    D. Schmidling, J. Comput. Chem. 34, 2771 (2013)CrossRefGoogle Scholar
  49. 49.
    R. Marquardt, M. Quack, J. Chem. Phys. 109, 10628 (1998)Google Scholar
  50. 50.
    S.N. Yurchenko, J. Tennyson, R.J. Barber, W. Thiel, J. Mol. Spectrosc. 291, 69 (2013)CrossRefGoogle Scholar
  51. 51.
    D. Cox, J. Little, D. O’Shea, Ideals, Varieties and Algorithms (Springer, Berlin, 1992)CrossRefGoogle Scholar
  52. 52.
    H. Derksen, Adv. Math. 141, 366 (1999)CrossRefGoogle Scholar
  53. 53.
    H. Derksen, G. Kemper, Computational Invariant Theory, Encyclopaedia of Mathematical Sciences, vol. 130 (Springer, Berlin, 2002)CrossRefGoogle Scholar
  54. 54.
    See supporting information at doi: 10.1007/s10910-014-0410-5 for the integrity bases of \(M^{{\rm T}_{d}} \left(\Gamma _f;A_1 \oplus E \oplus F_2 \oplus F_2;t\right)\), \(\Gamma _f \in \{A_1, A_2, E, F_1, F_2\}\)
  55. 55.
    D.J. Benson, Polynomial Invariants of Finite Groups, London Mathematical Society Lecture Notes Series, vol. 190 (Cambridge University Press, Cambridge, 1993)CrossRefGoogle Scholar
  56. 56.
    R.P. Stanley, B. (New Series) Am. Math. Soc. 1, 475 (1979)Google Scholar
  57. 57.
    T. Molien, Sitzungsber. König. Preuss. Akad. Wiss. 52, 1152 (1897)Google Scholar
  58. 58.
    J. Patera, R.T. Sharp, P. Winternitz, J. Math. Phys. 19, 2362 (1978)CrossRefGoogle Scholar
  59. 59.
    W. Burnside, Theory of Groups of Finite Order (Dover Publications, New York, 1955)Google Scholar
  60. 60.
    X.-G. Wang, T. Carrington Jr, J. Chem. Phys. 118, 6260 (2003)Google Scholar
  61. 61.
    Maple 13, (2009), Maple is a registered trademark of Maplesoft, a division of Waterloo Maple Inc.Google Scholar
  62. 62.
    A.V. Nikitin, M. Rey, V.G. Tyuterev, Chem. Phys. Lett. 565, 5 (2013)CrossRefGoogle Scholar
  63. 63.
    E.P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Pure and applied Physics, vol. 5 (Academic Press, 1959) translated from the German 1931 edition by J. J. GriffinGoogle Scholar
  64. 64.
    R.G. Littlejohn, M. Reinsch, Rev. Mod. Phys. 69, 213 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Patrick Cassam-Chenaï
    • 1
    Email author
  • Guillaume Dhont
    • 2
  • Frédéric Patras
    • 1
  1. 1.CNRS, LJAD, UMR 7351University of Nice Sophia AntipolisNiceFrance
  2. 2.Université du Littoral Côte d’Opale, Laboratoire de Physico-Chimie de l’AtmosphèreDunkerqueFrance

Personalised recommendations