Journal of Mathematical Chemistry

, Volume 51, Issue 8, pp 2001–2019 | Cite as

Bifurcation analysis of reaction–diffusion Schnakenberg model

Original Paper

Abstract

Bifurcations of spatially nonhomogeneous periodic orbits and steady state solutions are rigorously proved for a reaction–diffusion system modeling Schnakenberg chemical reaction. The existence of these patterned solutions shows the richness of the spatiotemporal dynamics such as oscillatory behavior and spatial patterns.

Keywords

Schnakenberg model Steady state solution Hopf bifurcation  Steady state bifurcation Pattern formation 

Mathematics Subject Classification (2000)

58F07 58C28 58C15 34C23 35B20 35B32 

References

  1. 1.
    A. De Wit, G. Dewel, P. Borckmans, Chaotic Turing–Hopf mixed mode. Phys. Rev. E. 48, R4191–R4194 (1993)CrossRefGoogle Scholar
  2. 2.
    M. Ghergu, V.D. Rădulescu, Nonlinear PDEs. Mathematical models in biology, chemistry and population genetics. Springer monographs in mathematics (Springer, Heidelberg, 2012)Google Scholar
  3. 3.
    W. Han, Z. Bao, Hopf bifurcation analysis of a reaction–diffusion Sel’kov system. J. Math. Anal. Appl. 356(2), 633–641 (2009)CrossRefGoogle Scholar
  4. 4.
    T.-W. Hwang, H.-J. Tsai, Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions. J. Phys. A 38(38), 8211–8223 (2005)CrossRefGoogle Scholar
  5. 5.
    D. Iron, J. Wei, M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model. J. Math. Biol. 49(4), 358–390 (2004)CrossRefGoogle Scholar
  6. 6.
    J. Jin, J. Shi, J. Wei, F. Yi, Bifurcations of Patterned Solutions in Diffusive Lengyel-Epstein System of CIMA Chemical Reaction (To appear in Rocky Moun. J, Math, 2013)Google Scholar
  7. 7.
    W. Just, M. Bose, S. Bose, H. Engel, E. Schöll, Spatiotemporal dynamics near a supercritical Turing–Hopf bifurcation in a two-dimensional reaction-diffusion system. Phys. Rev. E. 64, 026219 (2001)CrossRefGoogle Scholar
  8. 8.
    Y. Li, Steady-state solution for a general Schnakenberg model. Nonlinear Anal. Real World Appl. 12(4), 1985–1990 (2011)CrossRefGoogle Scholar
  9. 9.
    J. Liu, F. Yi, J. Wei, Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer-Meinhardt model of morphogenesis. J. Bifur. Chaos Appl. Sci. Eng. 20(4), 1007–1025 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Meixner, A. De Wit, S. Bose, E. Schöll, Generic spatiotemporal dynamics near codimension-two Turing–Hopf bifurcations. Phys. Rev. E. 55, 6690–6697 (1997)CrossRefGoogle Scholar
  11. 11.
    J.D. Murray, Mathematical Biology: I. An Introduction, 3rd edn. (Springer, New York, 2002)Google Scholar
  12. 12.
    M.R. Ricard, S. Mischler, Turing instabilities at Hopf bifurcation. J. Nonlinear Sci. 19, 467–496 (2009)CrossRefGoogle Scholar
  13. 13.
    J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81(3), 389–400 (1979)CrossRefGoogle Scholar
  14. 14.
    J. Shi, X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246(7), 2788–2812 (2009)CrossRefGoogle Scholar
  15. 15.
    A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. B237, 37–72 (1952)Google Scholar
  16. 16.
    J. Wang, J. Shi, J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey. J. Differ. Equ. 251(4–5), 1276–1304 (2011)CrossRefGoogle Scholar
  17. 17.
    M.J. Ward, J. Wei, The existence and stability of asymmetric spike patterns for the Schnakenberg model. Stud. Appl. Math. 109(3), 229–264 (2002)CrossRefGoogle Scholar
  18. 18.
    J. Wei, M. Winter, Stationary multiple spots for reaction-diffusion systems. J. Math. Biol. 57(1), 53–89 (2008)CrossRefGoogle Scholar
  19. 19.
    C. Xu, J. Wei, Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction diffusion model. Nonlinear Anal. Real World Appl. 13(4), 1961–1977 (2012)CrossRefGoogle Scholar
  20. 20.
    F. Yi, J. Liu, J. Wei, Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model. Nonlinear Anal. Real World Appl. 11(5), 3770–3781 (2010)CrossRefGoogle Scholar
  21. 21.
    F. Yi, J. Wei, J. Shi, Diffusion-driven instability and bifurcation in the Lengyel–Epstein system. Nonlinear Anal. Real World Appl. 9(3), 1038–1051 (2008)CrossRefGoogle Scholar
  22. 22.
    F. Yi, J. Wei, J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ. 246(5), 1944–1977 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ping Liu
    • 1
  • Junping Shi
    • 2
  • Yuwen Wang
    • 1
  • Xiuhong Feng
    • 1
  1. 1.Y.Y. Tseng Functional Analysis Research Center and School of Mathematical SciencesHarbin Normal UniversityHarbinPeople’s Republic of China
  2. 2.Department of MathematicsCollege of William and MaryWilliamsburgUSA

Personalised recommendations