Journal of Mathematical Chemistry

, Volume 51, Issue 6, pp 1608–1618 | Cite as

Eigenvalues of saturated hydrocarbons

Original Paper

Abstract

A simplified Hückel-type molecular-orbital (MO) model for the valence electrons of saturated hydrocarbons is proposed and the consequent eigenvalue spectrum considered. A first foundational result is obtained, which every chemist “knows”, namely that: alkanes are stable, with half their (Hückel-type MO) eigenvalues positive and half negative.

Keywords

Saturated hydrocarbons Alkanes Stellation Para-line graph 

References

  1. 1.
    N. Biggs, E.K. Lloyd, R.J. Wilson, Graph theory, 1736–1936 (Clarendon Press, Oxford, 1986)Google Scholar
  2. 2.
    A. Cayley, On the mathematical theory of isomers. Philos. Mag. 67(5), 444–447 (1874)Google Scholar
  3. 3.
    W.K. Clifford, Extract of a letter to Mr. Sylvester from Prof. Clifford of University College, London. Am. J. Math. 1(2), 126–128 (1878)CrossRefGoogle Scholar
  4. 4.
    W.K. Clifford, Note on quantics of alternate numbers, used as a means for determining the invariants and covariants of quantics in general. Proc. Lond. Math. Soc 10(148), 124–129 (1880)Google Scholar
  5. 5.
    J. Devillers, A.T. Balaban (eds.), Topological Indices and Related Descriptors in QSAR and QSPAR, CRC, Boca Raton, FL (2000)Google Scholar
  6. 6.
    M.J.S. Dewar, R.C. Dougherty, The PMO Theory of Organic Chemistry (Plenum Press, New York, 1975)CrossRefGoogle Scholar
  7. 7.
    S. El-Basil, A. Kerber (eds.), Communications in mathematical and in computer chemistry (MATCH). Special issue, no. 46 (2002)Google Scholar
  8. 8.
    K. Fukui, H. Kato, T. Yonezawa, Frontier electron density in saturated hydrocarbons. Bull. Chem. Soc. Jpn. 34(3), 442–445 (1961)CrossRefGoogle Scholar
  9. 9.
    V. Gineityte, Substantiation of the basis set orthogonality assumption for saturated molecules and crystals on account of their common topological structure. J. Mol. Struct. THEOCHEM 342, 219–229 (1995)CrossRefGoogle Scholar
  10. 10.
    V. Gineityte, D. Shatkovskaya, Transferability of the electronic structure characteristics of saturated molecules. Int. J. Quantum Chem. 39(1), 11–17 (1991)CrossRefGoogle Scholar
  11. 11.
    P. Gordon, W. Akexejeff, Uberestimmung der formeln der chemie und der invariantheorie. Zeitschrift f. physikalische Chemie, Stoicheometrie, and Verwandschaftslehre 35, 610–633 (1900)Google Scholar
  12. 12.
    A. Graovac, I. Gutman, N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules (Springer, Berlin, 1977)CrossRefGoogle Scholar
  13. 13.
    G.G. Hall, The ionization potentials of some paraffinic molecules. Trans. Faraday Soc. 50, 319–322 (1954)CrossRefGoogle Scholar
  14. 14.
    R. Hoffmann, An extended Hückel theory. I. Hydrocarbons. J. Chem. Phys. 39, 1397–1412 (1963)CrossRefGoogle Scholar
  15. 15.
    D.J. Klein, Graph theoretically formulated electronic-structure theory. Int. Electron. J. Mol. 2, 814–834 (2003)Google Scholar
  16. 16.
    B.D. McKay, Nauty users guide (version 2.4). Computer Science Department, Australian National University, 2007Google Scholar
  17. 17.
    L. Pauling, The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 53(4), 1367–1400 (1931)CrossRefGoogle Scholar
  18. 18.
    L. Pauling, The calculation of matrix elements for Lewis electronic structures of molecules. J. Chem. Phys. 1, 280–283 (1933)CrossRefGoogle Scholar
  19. 19.
    J.A. Pople, D.P. Santry, A molecular orbital theory of hydrocarbons. Mol. Phys. 7(3), 269–286 (1964)CrossRefGoogle Scholar
  20. 20.
    J.W. Raymonda, W.T. Simpson, Experimental and theoretical study of sigma-bond electronic transitions in alkanes. J. Chem. Phys. 47, 430–448 (1967)CrossRefGoogle Scholar
  21. 21.
    G. Rumer, Zur theorie der spinvalenz. Nachrichten von der Gesellschaft der Wissenschaften zu Gttingen. Mathematisch-Physikalische Klasse, 337–341Google Scholar
  22. 22.
    C. Sandorfy, LCAO MO calculations on saturated hydrocarbons and their substituted derivatives. Can. J. Chem. 33(8), 1337–1351 (1955)CrossRefGoogle Scholar
  23. 23.
    T. Shirai, The spectrum of infinite regular line graphs. Trans. Am. Math. Soc. 352(1), 115–132 (2000)CrossRefGoogle Scholar
  24. 24.
    J.J. Sylvester, On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, with three appendices. Am. J. Math. 1(1), 64–104 (1878)CrossRefGoogle Scholar
  25. 25.
    J.H. van’t Hoff, La chimie dans l’espace (PM Bazendijk, Bazendijk, 1875)Google Scholar
  26. 26.
    H. Weyl, Philosophy of Mathematics and Natural Science (Princeton University Press, Princeton, 1949)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Marine SciencesTexas A&M, GalvestonGalvestonUSA
  2. 2.Department of Mathematics and Applied MathematicsVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations