Journal of Mathematical Chemistry

, Volume 51, Issue 5, pp 1343–1375 | Cite as

Bistable stochastic biochemical networks: highly specific systems with few chemicals

  • Hyung Ju HwangEmail author
  • Juan J. L. Velázquez
Original Paper


In this paper we describe a class of stochastic biochemical systems exhibiting bistable behavior, in the sense that the invariant measure associated to the system is concentrated near two different classes of states of the system. We develop methods that allow us to describe the behavior of the invariant measure in some suitable asymptotic limits, as well as the switching times for the transitions between the states close to each of the states with high probability. Due to the discrete character of the problem, switching times cannot be computed using the classical Kramers’ formula, and alternative methods are required.


Stochastic chemical system Bistable behavior Switching times Markov processes 



We would like to thank Seongwon Lee for drawing the diagrams in Sect. 4. H.J.H acknowledges the support by Basic Science Research Program (2010-0008127) and (2012047640) through the National Research Foundation of Korea (NRF). J.J.L.V. acknowledges the support by the grant DGES MTM2010-16467.


  1. 1.
    D.F. Anderson, G. Craciun, T.G. Kurtz, Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. (2010). doi: 10.1007/s11538-010-9517-4
  2. 2.
    A. Arkin, J. Ross, H.H. McAdams, Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149(4), 1633–1648 (1998)Google Scholar
  3. 3.
    D.L. Bunker, B. Garrett, T. Kleindienst, G.S. Long, Discrete simulation method in combustion kinetics. Combust. Flame 23, 373 (1974)CrossRefGoogle Scholar
  4. 4.
    K. Ball, T.G. Kurtz, L. Popovic, G. Rempala, Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Probab. 16(4), 1925–1961 (2006)CrossRefGoogle Scholar
  5. 5.
    A.F. Bartholomay, Stochastic models for chemical reactions: I. Theory of the unimolecular reaction process. Math. Biophys. 20, 175–190 (1958)CrossRefGoogle Scholar
  6. 6.
    A.F. Bartholomay, Stochastic models for chemical reactions: II. The unimolecular rate constant. Math. Biophys. 21, 363–373 (1959)CrossRefGoogle Scholar
  7. 7.
    A. Becskei, B. Seraphin, L. Serrano, Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20, 2528–2535 (2001)CrossRefGoogle Scholar
  8. 8.
    C.M. Bender, S.A. Orzag, Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory (Springer, Berlin, 1999)CrossRefGoogle Scholar
  9. 9.
    W.J. Blake, M. Kaern, C.R. Cantor, J.J. Collins, Noise in eukaryotic gene expression. Nature 422(6932), 633–637 (2003)CrossRefGoogle Scholar
  10. 10.
    A.T. Bharucha-Reid, Elements of the Theory of Markov Processes and Their Applications, 1st edn. (Dover, New York, 1997). (1st edn., 1960)Google Scholar
  11. 11.
    Y. Cao, D. Gillespie, L. Petzold, The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122(1), 014116 (2005)CrossRefGoogle Scholar
  12. 12.
    Y. Cao, D. Gillespie, L. Petzold, Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems. J. Comput. Phys. 206, 395–411 (2005)CrossRefGoogle Scholar
  13. 13.
    G. Craciun, M. Feinberg, Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J. Appl. Math. 65(5), 1526–1546 (2005)CrossRefGoogle Scholar
  14. 14.
    G. Craciun, M. Feinberg, Multiple equilibria in complex chemical reaction networks: II. The species-reactions graph. SIAM J. Appl. Math. 66(4), 1321–1338 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Delbrück, Statistical fluctuations in autocatalytic reactions. J. Chem. Phys. 8, 120–124 (1940)CrossRefGoogle Scholar
  16. 16.
    S. De Monte, F. d’Ovidio, S. Danø, P.G. Sørensen, Dynamical quorum sensing: population density encoded in cellular dynamics. PNAS 104(47), 18377–18381 (2007)CrossRefGoogle Scholar
  17. 17.
    M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002)CrossRefGoogle Scholar
  18. 18.
    R. Erban, I.G. Kevrekidis, D. Adalsteinsson, T.C. Elston, Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation. J. Chem. Phys. 124(8), 084106 (2006)CrossRefGoogle Scholar
  19. 19.
    R. Erban, S.J. Chapman, I.G. Kevrekidis, T. Vejchodský, Analysis of a stochastic chemical system close to a sniper bifurcation of its mean-field model. SIAM J. Appl. Math. 70(3), 984–1016 (2009)CrossRefGoogle Scholar
  20. 20.
    R. Erban, S.J. Chapman, Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions. Phys. Biol. 6(4), 046001 (2009)CrossRefGoogle Scholar
  21. 21.
    H. Eyring, The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)CrossRefGoogle Scholar
  22. 22.
    M. Feinberg, Lectures of Chemical Reactions Networks.
  23. 23.
    W. Feller, An Introduction to Probability Theory and Its Applications, 2nd edn. (Wiley, London, 1971)Google Scholar
  24. 24.
    J.E. Ferrell Jr, Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Chem. Biol. 6, 140–148 (2002)Google Scholar
  25. 25.
    B.B. Finlay, S. Falkow, Common themes in microbial pathogenicity. Microbiol. Rev. 53(2), 210–230 (1989)Google Scholar
  26. 26.
    C. Gadgila, C.H. Lee, H.G. Othmer, A stochastic analysis of first-order reaction networks. Bull. Math. Biol. 67, 901–946 (2005)CrossRefGoogle Scholar
  27. 27.
    J. Garcia-Ojalvo, M.B. Elowitz, S.H. Strogatz, Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. PNAS 101(30), 10955–10960 (2004)CrossRefGoogle Scholar
  28. 28.
    T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)CrossRefGoogle Scholar
  29. 29.
    M.A. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104, 1876–1889 (2000)CrossRefGoogle Scholar
  30. 30.
    D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 2, 403–434 (1976)CrossRefGoogle Scholar
  31. 31.
    D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  32. 32.
    T. Gregor, K. Fujimoto, N. Masaki, S. Sawai, The onset of collective behavior in social amoebae. Science 328, 1021–1025 (2010)CrossRefGoogle Scholar
  33. 33.
    E.L. Haseltine, J.B. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Phys. Chem. 117(15), 6959–6969 (2002)CrossRefGoogle Scholar
  34. 34.
    H.J. Hwang, J.J.L. Velázquez, Bistable stochastic biochemical networks with long switching times. Part II: Large chemical networks and systems with many molecules. PreprintGoogle Scholar
  35. 35.
    F. Horn, R. Jackson, General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81 (1972)CrossRefGoogle Scholar
  36. 36.
    H.W. Kang, L. Zheng, H.G. Othmer, A new method for choosing the computational cell in stochastic reaction-diffusion systems. PreprintGoogle Scholar
  37. 37.
    T. Kalmar, C. Lim, P. Hayward, S. Muñoz-Descalzo, J. Nichols, J. Garcia-Ojalvo, A. Martinez-Arias, Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7(7), e1000149 (2009)CrossRefGoogle Scholar
  38. 38.
    K. Kang, B. Perthame, A. Stevens, J.J.L. Velázquez, An integro-differential equation model for alignment and orientational aggregation. J. Differ. Equ. 246(4), 1387–1421 (2009)CrossRefGoogle Scholar
  39. 39.
    H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)CrossRefGoogle Scholar
  40. 40.
    T.G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57(7), 2976–2978 (1972)CrossRefGoogle Scholar
  41. 41.
    C.H. Lee, R. Lui, A reduction method for multiple time scale stochastic reaction networks. J. Math. Chem. 46, 1292–1321 (2009)CrossRefGoogle Scholar
  42. 42.
    C.H. Lee, Stochastic analysis of biochemical reaction networks. Ph.D. thesis. University of Minnesota (2006)Google Scholar
  43. 43.
    E. Schrödinger, What is Life? (Cambridge University Press, Cambridge, 1944)Google Scholar
  44. 44.
    R. Losick, C. Desplan, Stochasticity and cell fate. Science 320, 65–68 (2008)CrossRefGoogle Scholar
  45. 45.
    B.E. Munsky, The finite state projection approach for the solution of the master equation and its applications to stochastic gene regulatory networks. Ph.D. thesis. University of California at Santa Barbara (2008)Google Scholar
  46. 46.
    S. Peleš, B. Munsky, M. Khammash, Reduction and solution of the chemical master equation using time scale separation and finite state projection. J. Chem. Phys. 125, 204104 (2006)CrossRefGoogle Scholar
  47. 47.
    I. Primi, A. Stevens, J.J.L. Velázquez, Mass-selection in aligment models with non-deterministic effects. Commun. PDEs 34(5), 419–456 (2009)CrossRefGoogle Scholar
  48. 48.
    C. Rao, A. Arkin, Stochastic chemical kinetics and the quasi steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118, 4999–5010 (2003)CrossRefGoogle Scholar
  49. 49.
    J.M. Raser, E.K. Shea, Noise in gene expression: origins, consequences and control. Science 309, 2010–2013 (2005)CrossRefGoogle Scholar
  50. 50.
    B.D. Robertson, T.F. Meyer, Genetic variation in pathogenic bacteria. Trends Genet. 8(12), 422–427 (1992)CrossRefGoogle Scholar
  51. 51.
    V. Shahrezaei, P.S. Swain, Analytical distributions for stochastic gene expression. PNAS 105(45), 17256–17261 (2008)CrossRefGoogle Scholar
  52. 52.
    C. Schütte, A. Fischer, W. Huisinga, P. Deuflhard, A direct approach to conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys. (special issue on Computational Biophysics) 151, 146–168 (1999)Google Scholar
  53. 53.
    C. Schütte, W. Huisinga, Biomolecular conformations can be identified as metastable sets of molecular dynamics, in Handbook of Numerical Analysis. Special Volume Computational Chemistry, ed. by P.G. Ciarlet (North-Holland, Amsterdam, 2003), pp. 699–744CrossRefGoogle Scholar
  54. 54.
    A. Slepoy, A.P. Thompson, S.J. Plimpton, A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128, 205101 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsPohang University of Science and TechnologyPohangRepublic of Korea
  2. 2.Institute of Applied MathematicsUniversity of BonnBonnGermany

Personalised recommendations