Linear compartmental systems. I. kinetic analysis and derivation of their optimized symbolic equations
- 158 Downloads
- 5 Citations
Abstract
The study of many biological systems requires the application of a compartmental analysis, together with the use of isotopic tracers, parameter identification and methods to evaluate the mean parameters. For all this, the kinetic equations of the compartmental system as a function of its parameters are needed. In this paper, we present some considerations on the diagrams of connectivity of linear compartmental systems and obtain new properties from the matrix corresponding to the ordinary first-order linear differential equation systems which describe their kinetic behaviour. Using these properties, symbolic equations are obtained in a simplified form. These equations provide the instantaneous amount of substance in any compartment of the system when zero input is injected into one or more of the system compartments, solely as a function of those parameters of compartmental systems which really have an influence on the sought expression. This is unlike what happens in the other symbolic equations obtained in a previous contribution that included all the fractional transfer coefficients involved in the compartmental system, regardless of whether or not they had an influence on the instantaneous amount of substance.
Keywords
Compartmental system Linear Open–closed Kinectics Symbolic equationsPreview
Unable to display preview. Download preview PDF.
References
- 1.Rowland M., Tozer N.: Clinical Pharmacokinetics: Concepts and Applications, 2nd edn. Lea & Febiger, London (1989)Google Scholar
- 2.Riegelman S., Loo J.C., Rowland M.: Shortcomings in pharmacokinetic analysis by conceiving the body to exhibit properties of a single compartment. J. Pharm. Sci. 57(1), 117–123 (1968)CrossRefGoogle Scholar
- 3.Watabe H., Ikoma Y., Kimura Y., Naganawa M., Shidahara M.: PET kinetic analysis-compartmental model. Ann. Nucl. Med. 20(9), 583–588 (2006)CrossRefGoogle Scholar
- 4.Peletier L.A., Benson N., van der Graaf P.H.: Impact of protein binding on receptor occupancy: a two-compartment model. J. Theor. Biol. 265(4), 657–671 (2010)CrossRefGoogle Scholar
- 5.Rescigno A.: Compartmental analysis and its manifold applications to pharmacokinetics. AAPS J. 12(1), 61–72 (2010)CrossRefGoogle Scholar
- 6.Rescigno A.: Compartmental analysis revisited. Pharmacol. Res. 39(6), 471–478 (1999)CrossRefGoogle Scholar
- 7.Jacquez J.A.: Modelling with Compartmets. Biomedware, Ann Arbor (1999)Google Scholar
- 8.R. Varon, Estudios de Sistemas de Compartimentos y su Aplicación a la Fase de Transición de Ecuaciones cinéticas. Doctoral Thesis. (Universidad de Murcia 1979)Google Scholar
- 9.Bevan D.R., Weyand E.H.: Compartmental analysis of the disposition of benzo[a]pyrene in rats. Carcinogenesis 9(11), 2027–2032 (1988)CrossRefGoogle Scholar
- 10.Garcia-Meseguer M.J., Vidalde Labra J.A., Garcia-Canovas F., Havsteen B.H., Garcia-Moreno M., Varon R.: Time course equations of the amount of substance in a linear compartmental system and their computerized derivation. Biosystems 59(3), 197–220 (2001)CrossRefGoogle Scholar
- 11.Galvez J., Varon R.: I. Transient phase kinetics of enzyme reactions. J. Theor. Biol. 89(1), 1–17 (1981)CrossRefGoogle Scholar
- 12.Fleishaker J.C., Smith R.B.: Compartmental model analysis in pharmacokinetics. J. Clin. Pharmacol. 27(12), 922–926 (1987)Google Scholar
- 13.Orisakwe O.E., Afonne O.J., Ilondu N.A., Obi E., Ufearo C.S., Agbasi P.U. et al.: Influence of prokinetics on the gastrointestinal transit and residence times of activated charcoal. J. Pak. Med. Assoc. 52(8), 354–356 (2002)Google Scholar
- 14.Endres C.J., De Jesus O.T., Uno H., Doudet D.J., Nickles J.R., Holden J.E.: Time profile of cerebral [18F]6-fluoro-L-DOPA metabolites in nonhuman primate: implications for the kinetics of therapeutic L-DOPA. Front. Biosci. 9, 505–512 (2004)CrossRefGoogle Scholar
- 15.Kuypers D.R., Vanrenterghem Y.: Time to reach tacrolimus maximum blood concentration,mean residence time, and acute renal allograft rejection: an open-label, prospective, pharmacokinetic study in adult recipients. Clin. Ther. 26(11), 1834–1844 (2004)CrossRefGoogle Scholar
- 16.Sarria B., Dainty J.R., Fox T.E., Fairweather-Tait S.J.: Estimation of iron absorption in humans using compartmental modelling. Eur. J. Clin. Nutr. 59(1), 142–144 (2005)CrossRefGoogle Scholar
- 17.Harmsen M.M., van Solt C.B., Fijten H.P., Van Setten M.C.: Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins. Vaccine 23(41), 4926–4934 (2005)CrossRefGoogle Scholar
- 18.Juillet B., Saccomani M.P., Bos C., Gaudichon C., Tome D., Fouillet H.: Conceptual, methodological and computational issues concerning the compartmental modeling of a complex biological system: Postprandial inter-organ metabolism of dietary nitrogen in humans. Math. Biosci. 204(2), 282–309 (2006)CrossRefGoogle Scholar
- 19.Varon R., Masia-Perez J., Garcia-Molina F., Garcia-Canovas F., Arias E., Arribas E. et al.: An alternative analysis of enzyme systems based on the whole reaction time. Evaluation of the kinetic parameters and initial enzyme concentration. J. Math. Chem. 42(4), 789–813 (2007)CrossRefGoogle Scholar
- 20.de Graaf A.A., Freidig A.P., De R.B., Jamshidi N., Heinemann M., Rullmann J.A. et al.: Nutritional systems biology modeling: from molecular mechanisms to physiology. PLoS Comput. Biol. 5(11), e1000554 (2009)CrossRefGoogle Scholar
- 21.Fouillet H., Juillet B., Gaudichon C., Mariotti F., Tome D., Bos C.: Absorption kinetics are a key factor regulating postprandial protein metabolism in response to qualitative and quantitative variations in protein intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297(6), R1691–R1705 (2009)CrossRefGoogle Scholar
- 22.Meier P., Zierler K.L.: On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6(12), 731–744 (1954)Google Scholar
- 23.Nye J.A., Votaw J.R., Jarkas N., Purselle D., Camp V., Bremner J.D. et al.: Compartmental modeling of 11C-HOMADAM binding to the serotonin transporter in the healthy human brain. J. Nucl. Med. 49(12), 2018–2025 (2008)CrossRefGoogle Scholar
- 24.Brix G., Zwick S., Kiessling F., Griebel J.: Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. Med. Phys. 36(7), 2923–2933 (2009)CrossRefGoogle Scholar
- 25.Rescigno A.: A contribution to the theory of tracer methods II. Biochim. Biophys. Acta. 21(1), 111–116 (1956)CrossRefGoogle Scholar
- 26.Anderson D.H.: Compartmental Modelling and Tracer Kinetics. Springer, Berlin (1983)Google Scholar
- 27.Godfrey K.: Compartmental Models and Their Application. Academic Press, London (1983)Google Scholar
- 28.Jacquez J.A.: Compartmental Analysis in Biology and Medicine, 2nd edn. Ann Arbor, Michigan (1985)Google Scholar
- 29.Rescigno A., Thakur S.: New Trends in Pharmacokinetics. Plenum Press, New York (1991)Google Scholar
- 30.Varon R., Garcia-Meseguer M.J., Garcia-Canovas F., Havsteen B.H.: General linear compartment model with zero input: I. Kinetic equations. Biosystems 36(2), 121–133 (1995)CrossRefGoogle Scholar
- 31.Varon R., Garcia-Meseguer M.J., Havsteen B.H.: General linear compartment model with zero input: II. The computerized derivation of the kinetic equations. Biosystems 36(2), 135–144 (1995)CrossRefGoogle Scholar
- 32.Varon R., Garcia-Meseguer M.J., Valero E., Garcia-Moreno M., Garcia-Canovas F.: General linear compartment model with zero input: III. First passage residence time of enzyme systems. Biosystems 36(2), 145–156 (1995)CrossRefGoogle Scholar
- 33.M.J. Garcia-Meseguer, Análisis cinético de los Sistemas Lineales de Compartimentos: Aplicación a la Evaluación de Parámetros Medios. Doctoral Thesis. (Servicio de publicaciones de la UCLM, Cuenca, 1998)Google Scholar
- 34.Rescigno A.: Compartmental analysis and its manifold applications to pharmacokinetics. AAPS J. 12(1), 61–72 (2010)CrossRefGoogle Scholar
- 35.Jacquez J.A.: Compartmental Analysis in Biology and Medicine, 3rd edn. Thompson-Shore Inc, Dexter (1996)Google Scholar
- 36.Holz M., Fahr A.: Compartment modeling. Adv. Drug Deliv. Rev. 48(2–3), 249–264 (2001)CrossRefGoogle Scholar
- 37.Rescigno A., Segre G.: On some metric properties of the systems of compartments. Bull. Math. Biophys. 27(3), 315–323 (1965)CrossRefGoogle Scholar
- 38.Chou K.C.: Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady-state systems. Biophys. Chem. 35(1), 1–24 (1990)CrossRefGoogle Scholar
- 39.Lal R., Anderson D.H.: Calculation and utilization of component matrices in linear bioscience models. Math. Biosci. 99(1), 11–29 (1990)CrossRefGoogle Scholar
- 40.Gibaldi M.: Biopharmaceutics and Clinical Pharmacokinetics, 4th edn. Lea and Febiger, Londres (1991)Google Scholar
- 41.Cheng H.Y.: A method for calculating the mean residence times of catenary metabolites. Biopharm. Drug Dispos. 12(5), 335–342 (1991)CrossRefGoogle Scholar
- 42.Green M.H.: Introduction to modelling. J. Nutr. 122(3 Suppl), 690–694 (1992)Google Scholar
- 43.Galvez J., Varon R., Garcia-Carmona F.: III. Kinetics of enzyme reactions with inactivation steps. J. Theor. Biol. 89(1), 37–44 (1981)CrossRefGoogle Scholar
- 44.Hearon J.Z.: Theorems on linear systems. Ann. N. Y. Acad. Sci. 108, 36–38 (1963)CrossRefGoogle Scholar
- 45.Garcia-Meseguer M.J., Vidalde Labra J.A., Garcia-Moreno M., Garcia-Canovas F., Havsteen B.H., Varon R.: Mean residence times in linear compartmental systems. Symbolic formulae for their direct evaluation. Bull. Math. Biol. 65(2), 279–308 (2003)CrossRefGoogle Scholar
- 46.Taussky O.: On a theorem of Latimer and Macduffee. Can. J. Math. 1, 300–302 (1949)CrossRefGoogle Scholar
- 47.Jacquez J.A., Simon C.P.: Qualitative theory of compartmental systems with lags. Math. Biosci. 180, 329–362 (2002)CrossRefGoogle Scholar
- 48.Juillet B., Bos C., Gaudichon C., Tome D., Fouillet H.: Parameter estimation for linear compartmental models-a sensitivity analysis approach. Ann. Biomed. Eng. 37(5), 1028–1042 (2009)CrossRefGoogle Scholar
- 49.Travis C.C., Haddock G.: On structural identification. Math. Biosci. 56, 157–173 (1981)CrossRefGoogle Scholar
- 50.Cobelli C., Lefschy A., Jacur R.: Identifiability results on some constrained compartment systems. Math. Biosci. 47, 173–195 (1979)CrossRefGoogle Scholar
- 51.Rubinow S.I.: Introduction to Mathematical Biology. Wiley, New York (1975)Google Scholar
- 52.Chau N.: Linear n-compartment catenary models: Formulas to describe tracer amount in any compartment and identification of parameters from a concentration-time curve. Math. Biosci. 76, 185–206 (1985)CrossRefGoogle Scholar
- 53.Benet L.Z.: General treatment of linear mammillary models with elimination from any compartment as used in pharmacokinetics. J. Pharm. Sci. 61(4), 536–541 (1972)CrossRefGoogle Scholar