Journal of Mathematical Chemistry

, Volume 51, Issue 2, pp 620–636

Rényi entropy of the U(3) vibron model

  • E. Romera
  • R. del Real
  • M. Calixto
  • S. Nagy
  • Á. Nagy
Original Paper

Abstract

Rényi entropies and variances are determined in the vibron model. They provide a sharp detector for the quantum (shape) phase transition (from linear to bent) at the critical value ξc of a control parameter ξ. Numerical results are complemented and compared with a variational approximation in terms of parity-symmetry-adapted coherent (Schödinger’s catlike) states, which provide a good approximation to describe delocalization properties of the ground state of vibron models across the critical point for N-size molecules.

Keywords

Rényi entropies Quantum phase transition Variational approximation Coherent states 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sachdev S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  2. 2.
    Romera E., Nagy Á.: Phys. Lett. A 375, 3066 (2011)CrossRefGoogle Scholar
  3. 3.
    E. Romera, K. Sen, Á. Nagy, J. Stat. Mech. P09016 (2011). doi:10.1088/1742-5468/2011/09/P09016
  4. 4.
    E. Romera, M. Calixto, Á. Nagy, Europhys. Lett. 97 (2012). doi:10.1209/0295-5075/97/2011
  5. 5.
    Á. Nagy, E. Romera, Phys. A. (2012). doi:10.1016/j.physa.2012.02.024
  6. 6.
    A. Rényi, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Contributions to the Theory of Statistics, vol. 1 (1961), p. 547Google Scholar
  7. 7.
    Dicke R.H.: Phys. Rev. 93, 99 (1954)CrossRefGoogle Scholar
  8. 8.
    Emary C., Brandes T.: Phys. Rev. E 67, 066203 (2003)CrossRefGoogle Scholar
  9. 9.
    Emary C., Brandes T.: Phys. Rev. Lett. 90, 044101 (2003)CrossRefGoogle Scholar
  10. 10.
    C.E. Shannon, A mathematical theory of communication. Bell. Syst. Technol. J. 27, 379 (1948); ibid. 623 (1948)Google Scholar
  11. 11.
    Gühne O., Lewenstein M.: Phys. Rev. A 70, 022316 (2004)CrossRefGoogle Scholar
  12. 12.
    Renner R., Gisin N., Kraus B.: Phys. Rev. A 72, 012332 (2005)CrossRefGoogle Scholar
  13. 13.
    Lévay P., Nagy S., Pipek J.: Phys. Rev. A 72, 022302 (2005)CrossRefGoogle Scholar
  14. 14.
    Arbo D.G., Reinhold C.O., Burgdörfer J., Pattanayak A.K., Stokely C.L., Zhao W., Lancaster J.C., Dunning F.B.: Phys. Rev. A 67, 063401 (2003)CrossRefGoogle Scholar
  15. 15.
    Romera E., de los Santos F.: Phys. Rev. A 78, 013837 (2008)CrossRefGoogle Scholar
  16. 16.
    Romera E., Nagy Á.: Phys. Lett. A 372, 4918 (2008)CrossRefGoogle Scholar
  17. 17.
    Romera E., Nagy Á.: Phys. Lett. A 372, 6823 (2008)CrossRefGoogle Scholar
  18. 18.
    Nagy Á., Romera E.: Phys. Lett. A 373, 844 (2009)CrossRefGoogle Scholar
  19. 19.
    Nagy Á., Romera E.: Int. J. Quantum Chem. 109, 2490 (2009)CrossRefGoogle Scholar
  20. 20.
    Calixto M., Nagy Á., Paradela I., Romera E.: Phys. Rev. A 85, 053813 (2012)CrossRefGoogle Scholar
  21. 21.
    Iachello F.: Algebraic Theory of Molecules. Oxford University Press, Oxford (1995)Google Scholar
  22. 22.
    Iachello F.: J. Chem. Phys. 78, 581 (1981)Google Scholar
  23. 23.
    Iachello F., Oss S.: J. Chem. Phys. 104, 6956 (1996)CrossRefGoogle Scholar
  24. 24.
    Calixto M., Romera E., del Real R.: J. Phys. A 45, 365301 (2012)CrossRefGoogle Scholar
  25. 25.
    Pérez-Bernal F., Iachello F.: Phys. Rev. A 77, 032115 (2008)CrossRefGoogle Scholar
  26. 26.
    Gilmore R.: J. Math. Phys. 20, 891 (1979)CrossRefGoogle Scholar
  27. 27.
    Perelomov A.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)CrossRefGoogle Scholar
  28. 28.
    Klauder J.R., Skagerstam Bo-Sture: Coherent States: Applications in Physics and Mathematical Physics. World Scientific, Singapore (1985)Google Scholar
  29. 29.
    Ali S.T., Antoine J-P., Gazeau J.P.: Coherent States, Wavelets and Their Generalizations. Springer, Berlin (2000)CrossRefGoogle Scholar
  30. 30.
    Leviatan A., Kirson M.W.: Ann. Phys. NY 188, 142 (1988)CrossRefGoogle Scholar
  31. 31.
    Kuyucak S., Roberts M.K.: Phys. Rev. A 57, 3381 (1998)CrossRefGoogle Scholar
  32. 32.
    Caprio M.A.: J. Phys. (Math. Gen.) A 38, 6385 (2005)CrossRefGoogle Scholar
  33. 33.
    Castaños O., Nahmad-Achar E., López-Peña R., Hirsch J.G.: Phys. Rev. A 83, 051601(R) (2011)Google Scholar
  34. 34.
    Castaños O., Nahmad-Achar E., López-Peña R., Hirsch J.G.: Phys. Rev. A 84, 013819 (2011)CrossRefGoogle Scholar
  35. 35.
    Pérez-Fernández P., Arias J.M., García-Ramos J.E., Pérez-Bernal F.: Phys. Rev. A 83, 062125 (2011)CrossRefGoogle Scholar
  36. 36.
    Dusuel S., Vidal J., Arias J.M., Dukelsky J., García-Ramos J.E.: Phys. Rev. C 72, 064332 (2005)CrossRefGoogle Scholar
  37. 37.
    Van Assche W., Yánez R.J., Dehesa J.S.: J. Math. Phys. 36, 4106 (1995)CrossRefGoogle Scholar
  38. 38.
    Sánchez-Moreno P., Dehesa J.S., Manzano D., Yánez R.J.: J. Comput. Appl. Math. 233, 2136 (2010)CrossRefGoogle Scholar
  39. 39.
    Aptekarev A.I., Buyarov V.S., Van Assche W., Dehesa J.S.: Doklady Math. 53, 47 (1996)Google Scholar
  40. 40.
    Aptekarev A.I., Buyarov V.S., Dehesa J.S.: Russ. Acad. Sci. Sb. Math. 82, 373 (1995)Google Scholar
  41. 41.
    Dehesa J.S., Van Assche W., Yánez R.J.: Phys. Rev. A 50, 3065 (1994)CrossRefGoogle Scholar
  42. 42.
    Dehesa J.S., Van Assche W., Yánez R.J.: J. Appl. Anal. 4, 91 (1997)Google Scholar
  43. 43.
    Aptekarev A.I., Dehesa J.S., Martinez-Finkelstein A.: J. Comput. Appl. Math. 233, 1335 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • E. Romera
    • 1
    • 2
  • R. del Real
    • 2
  • M. Calixto
    • 3
  • S. Nagy
    • 4
    • 5
  • Á. Nagy
    • 1
    • 4
  1. 1.Instituto Carlos I de Física Teórica y ComputacionalUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Física Atómica, Molecular y NuclearUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Matemática AplicadaUniversidad de GranadaGranadaSpain
  4. 4.Department of Theoretical PhysicsUniversity of DebrecenDebrecenHungary
  5. 5.MTA-DE Research Group in Particle PhysicsDebrecenHungary

Personalised recommendations