Journal of Mathematical Chemistry

, Volume 51, Issue 2, pp 603–619 | Cite as

On maximal resonance of polyomino graphs

Original Paper


A polyomino graph is a finite plane 2-connected bipartite graph every interior face of which is bounded by a regular square of side length one. Let k be a positive integer, a polyomino graph G is k-resonant if the deletion of any ik vertex-disjoint squares from G results in a graph either having perfect matchings or being empty. If graph G is k-resonant for any integer k ≥ 1, then it is called maximally resonant. All maximally resonant polyomino graphs are characterized in this work. As a result, the least integer k such that a k-resonant polyomino graph is maximally resonant is determined.


Polyomino graph k-resonance Maximal resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berge C., Chen C.C., Chvatal V., Seow C.S.: Combinatorial properties of polyominoes. Combinatorics 1, 217–224 (1981)CrossRefGoogle Scholar
  2. 2.
    Bandy J.A.: U, S, R Murty, Graph theory. Spring, New York (2008)CrossRefGoogle Scholar
  3. 3.
    Cockayne E.J.: Chessboard domination problems. Discrete Math. 86, 13–20 (1990)CrossRefGoogle Scholar
  4. 4.
    Chen R.: Perfect matchings of generalized polyomino graphs. Graphs. Comb. 21, 515–529 (2005)CrossRefGoogle Scholar
  5. 5.
    Chen R., Guo X.: k-coverable coronoid systems. J. Math. Chem. 12, 147–162 (1993)CrossRefGoogle Scholar
  6. 6.
    Clar E.: The Aromatic Sextet. Wiley, London (1972)Google Scholar
  7. 7.
    Guo X.: k-Resonace in benzenoid systems, open-ended carbon nanotubes, toroidal polyhexes; and k-cycle resonant graphs. MATCH Commun. Math. Comput. Chem. 56, 439–456 (2006)Google Scholar
  8. 8.
    Harary F., Mezey P.G.: Cell-shedding transformations, equivalence relations, and similarity measures for square-cell configurations. Int. Quant. Chem. 62, 353–361 (1997)CrossRefGoogle Scholar
  9. 9.
    Herndon W.C.: Thermochemical parameters for benzenoid hydrocarbons. Thermochim. Acta. 8, 225–237 (1974)CrossRefGoogle Scholar
  10. 10.
    Herndon W.C.: Resonance energies of aromatic hydrocarbons: A quantitative test of resonance theory. J. Am. Chem. Soc. 95, 2404–2406 (1973)CrossRefGoogle Scholar
  11. 11.
    John P., Sachs H., Zerntic H.: Counting perfectmatchings in polyominoes with applications to the dimer problem. Zastosowania Matemetyki (Appl. Math) 19, 465–477 (1987)Google Scholar
  12. 12.
    Kivelson S.A.: Statistics of holons in the quantum hard-core dimer gas. Phys. Rev. B 39, 259–264 (1989)CrossRefGoogle Scholar
  13. 13.
    Klein D.J.: Aromaticity via Kekulé structures and conjugated circuits. J. Chem. Educ. 69, 691–694 (1992)CrossRefGoogle Scholar
  14. 14.
    Klein D.J.: Elemental benzenoids. J. Chem. Inf. Comput. Sci. 34, 453–459 (1994)CrossRefGoogle Scholar
  15. 15.
    Klein D.J., Schmalz T.G.: Exact Enumeration of Long-Range-Ordered Dimer Coverings of the Square-Planar Lattice. Phys. Rev. B 41, 2244–2248 (1990)CrossRefGoogle Scholar
  16. 16.
    Klein D.J., Zhu H.: Resonance in elemental benzenoids. Discrete Appl. Math. 67, 157–173 (1996)CrossRefGoogle Scholar
  17. 17.
    Li Q., Liu S., Zhang H.: 2-extendability and k-resonance of non-bipartite Klein-bottle polyhexes. Discrete Appl. Math. 159, 800–811 (2011)CrossRefGoogle Scholar
  18. 18.
    Liu S., Zhang H.: Maximally resonant polygonal systems. Discrete Math. 310, 2790–2800 (2010)CrossRefGoogle Scholar
  19. 19.
    Lovasz L., Plummer M.D.: Matching Theory, Annals of Discrete Math. Vol. 29. North-Holland, Amsterdam (1986)Google Scholar
  20. 20.
    Motoyama A., Hosoya H.: King and domino polyominals for polyomino graphs. J. Math. Phys. 18, 1485–1490 (1997)CrossRefGoogle Scholar
  21. 21.
    Randić M.: Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chem. Phys. Lett. 38, 68–70 (1976)CrossRefGoogle Scholar
  22. 22.
    Randić M.: Graph theoretical approach to local and overall aromaticity of benzenoid hydrocarbons. Tetrahedron 31(11–12), 1477–1481 (1975)CrossRefGoogle Scholar
  23. 23.
    Randić M.: Aromaticity and conjugation. J. Amer. Chem. Soc. 99, 444–450 (1977)CrossRefGoogle Scholar
  24. 24.
    Randić M.: Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chem. Phys. Lett. 38, 68–70 (1976)CrossRefGoogle Scholar
  25. 25.
    Randić M.: Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103(9), 3449–3605 (2003)CrossRefGoogle Scholar
  26. 26.
    Sachs H.: Counting perfect matchings in lattice graphs, Topics in combinatorics and graph theory, pp. 577–584. Physica-Verlag, Heidelberg (1990)Google Scholar
  27. 27.
    Shiu W.C., Lam P.C.B., Zhang H.: k-resonance in toroidal polyhexes. J. Math. Chem. 38(4), 451–466 (2005)CrossRefGoogle Scholar
  28. 28.
    Shiu W.C., Zhang H.: A complete characterization for k-resonant Klein-bottle polyhexes. J. Math. Chem. 43, 45–59 (2008)CrossRefGoogle Scholar
  29. 29.
    Shiu W.C., Zhang H., Liu S.: Maximal resonance of cubic bipartite polyhedral graphs. J. Math. Chem. 48, 676–686 (2010)CrossRefGoogle Scholar
  30. 30.
    Simpson W.T.: On the use of structures as an aid in understanding π-electron spectra. J. Am. Chem. Soc. 75, 597–603 (1953)CrossRefGoogle Scholar
  31. 31.
    Ye D., Qi Z., Zhang H.: On k-resonant fullerene graphs. SIAM J. Discrete Math. 23(2), 1023–1044 (2009)CrossRefGoogle Scholar
  32. 32.
    Zhang F., Wang L.: k-Resonance of open-ended carbon nanotubes. J. Math. Chem. 35(2), 87–103 (2004)CrossRefGoogle Scholar
  33. 33.
    Zhang H., Liu S.: 2-resonance of plane bipartite graphs and its applications to boron-nitrogen fullerenes. Discrete Appl. Math. 158, 1559–1569 (2010)CrossRefGoogle Scholar
  34. 34.
    Zhang H., Ye D.: k-resonant toroidal polyhexes. J. Math. Chem. 44(1), 270–285 (2008)CrossRefGoogle Scholar
  35. 35.
    Zhang H., Zhang F.: Perfect matchings of polyomino graphs. Graphs Comb. 13, 295–304 (1997)Google Scholar
  36. 36.
    Zhang H., Zhang F.: Plane elementary bipartite graphs. Discrete Appl. Math. 105, 291–311 (2000)CrossRefGoogle Scholar
  37. 37.
    Zheng M.: k-Resonant benzenoid systems. J. Mol. Struct. (Theochem) 231, 321–334 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of MathematicsWuyi UniversityJiangmenPeople’s Republic of China

Personalised recommendations