Journal of Mathematical Chemistry

, Volume 51, Issue 1, pp 369–381 | Cite as

Use of Harriman’s construction in determining molecular equilibrium states

Open Access
Original Paper


Information-theoretic description of the electron probabilities and currents in molecules is extended to cover the complex amplitudes (wave functions) of quantum mechanics. The classical information measures of Fisher and Shannon, due to the probability/density distributions themselves, are supplemented by the nonclassical terms generated by the wave-function phase or the associated probability current. The previous one-electron development in such an entropic perspective on the molecular electronic structure is extended to cover N-electron states by adopting the Harriman-type framework of equidensity orbitals. This analysis emphasizes the phase part of electronic states, which generates the probability-current density and the associated non-classical entropy contributions, which allow one to distinguish the information content of states generating the same electron density and differing in their current composition. A complementary character of the Fisher and Shannon information measures is explored in the associated vertical (density-constrained) information principles, for determining the equilibrium state corresponding to the fixed ground-state electron density. It is argued that the lowest “thermodynamic” state generally differs from the true ground state of the system, by exhibiting the space-dependent phase and hence also the non-vanishing probability current, linked to the system electron distribution.


Density-constrained principles Electronic structure theory Entropic principles for molecules Harriman–Zumbach–Maschke construction Nonclassical information measures Information equilibrium states 


  1. 1.
    Fisher R.A.: Proc. Camb. Phil. Soc. 22, 700 (1925)CrossRefGoogle Scholar
  2. 2.
    Shannon C.E.: Bell System Tech. J. 27, 379, 623 (1948)Google Scholar
  3. 3.
    Frieden B.R.: Physics from Fisher Information: A Unification. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  4. 4.
    Hall M.J.W.: Phys. Rev. A 62, 012107 (2000)CrossRefGoogle Scholar
  5. 5.
    Nagy A.: Chem. Phys. Lett. 449, 212 (2007)CrossRefGoogle Scholar
  6. 6.
    Nalewajski R.F.: Int. J. Quantum Chem. 108, 2230 (2008)CrossRefGoogle Scholar
  7. 7.
    R.F. Nalewajski, in Foundations of Chemistry: Quantum Theory of Atoms and Molecules, ed. by C. Matta (in press)Google Scholar
  8. 8.
    R.F. Nalewajski, Entropic representation in the theory of molecular electronic structure. J. Math. Chem. (in press)Google Scholar
  9. 9.
    Nalewajski R.F.: Information Theory of Molecular Systems. Elsevier, Amsterdam (2006)Google Scholar
  10. 10.
    Levy M.: Proc. Natl. Acad. Sci. USA 76, 6062 (1979)CrossRefGoogle Scholar
  11. 11.
    Hohenberg P., Kohn W.: Phys. Rev. 136B, 864 (1964)CrossRefGoogle Scholar
  12. 12.
    Kohn W., Sham L.J.: Phys. Rev. 140A, 1133 (1965)CrossRefGoogle Scholar
  13. 13.
    R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989)Google Scholar
  14. 14.
    Dreizler R.M., Gross E.K.U.: Density Functional Theory: An Introduction to the Quantum Many-Body Problem. Springer, Berlin (1990)Google Scholar
  15. 15.
    R.F. Nalewajski, ed. Density Functional Theory I–IV, Topics in Current Chemistry, vols. 180–183 (Springer, Heidelberg, 1996)Google Scholar
  16. 16.
    Callen H.B.: Thermodynamics: An Introduction to the Physical Theories of the Equilibrium Thermostatics and Irreversible Thermodynamics. Wiley, New York (1960)Google Scholar
  17. 17.
    Harriman J.E.: Phys. Rev. A 24, 680 (1981)CrossRefGoogle Scholar
  18. 18.
    Macke W.: Ann. Phys. Leipzig 17, 1 (1955)CrossRefGoogle Scholar
  19. 19.
    Gilbert T.L.: Phys. Rev. B 12, 2111 (1975)CrossRefGoogle Scholar
  20. 20.
    March N.H.: Phys. Rev. A 26, 1845 (1982)CrossRefGoogle Scholar
  21. 21.
    G. Zumbach, K. Maschke, Phys. Rev. A 28, 544. Erratum, Phys. Rev. A 29, 1585 (1984)Google Scholar
  22. 22.
    R.F. Nalewajski, in Recent Advances in Density Functional Methods, part III, ed. by V. Barrone, A. Bencini, P. Fantucci (World Scientific, Singapore 2002), p. 257Google Scholar
  23. 23.
    Nagy A., Liu S.B.: Phys. Lett. A 372, 1654 (2008)CrossRefGoogle Scholar
  24. 24.
    von Weizsäcker C.F.: Z. Phys. 96, 431 (1935)CrossRefGoogle Scholar
  25. 25.
    R.F. Nalewajski, Ann. Phys. Leipzig (submitted)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of Theoretical ChemistryJagiellonian UniversityCracowPoland

Personalised recommendations