Advertisement

Journal of Mathematical Chemistry

, Volume 51, Issue 1, pp 289–296 | Cite as

Mathematical aspects of the LCAO MO first order density function (5): centroid shifting of MO shape functions basis set, properties and applications

  • Ramon Carbó-DorcaEmail author
Original Paper

Abstract

In MO SCF theory and related computational levels, the first order density function (DF) can be considered as a linear combination of the MO shape functions (ShF) set. This work studies the possibility of constructing a centroid function from the ShF set elements using it to perform a ShF set origin shift, while permitting the DF decomposition in two well defined function terms. The properties and consequences of such a simple operation are analyzed in deep.

Keywords

Density function (DF) SCF theory MO shape functions (ShF) MO ShF centroid MO centroid shifted ShF Ionization potentials Atomic shell approximation DF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carbó-Dorca R.: Mathematical aspects of the LCAO MO first order density function (1): atomic partition, metric structure and practical applications. J. Math. Chem. 43, 1076–1101 (2008)CrossRefGoogle Scholar
  2. 2.
    Carbó-Dorca R.: Mathematical aspects of the LCAO MO first order density function (2): relationships between density functions. J. Math. Chem. 43, 1102–1118 (2008)CrossRefGoogle Scholar
  3. 3.
    Carbó-Dorca R., Bultinck P.: Mathematical aspects of the LCAO MO first order density function (3): a general localization procedure. J. Math. Chem. 43, 1069–1075 (2008)CrossRefGoogle Scholar
  4. 4.
    Carbó-Dorca R., Besalú E.: Mathematical aspects of the LCAO MO first order density function (4): notes on the connection of Taylor series of electronic density (TSED) function with the holographic electronic density theorem (HEDT) and the Hohenberg–Kohn theorem (HKT). J. Math. Chem. 49, 836–842 (2011)CrossRefGoogle Scholar
  5. 5.
    Carbó-Dorca R., Besalú E.: Centroid origin shift of quantum object sets and molecular point clouds: description and element comparisons. J. Math. Chem. 50, 11161–11178 (2012)Google Scholar
  6. 6.
    Carbó-Dorca R., Besalú E.: Shells, point cloud huts, generalized scalar products, cosines and similarity tensor representations in vector semispaces. J. Math. Chem. 50, 210–219 (2012)CrossRefGoogle Scholar
  7. 7.
    Carbó-Dorca R.: Diagonal coefficient representation of density functions and quantum similarity measures. J. Math. Chem. 44, 621–627 (2008)CrossRefGoogle Scholar
  8. 8.
    Constans P., Carbó R.: J. Chem. Inf. Comp. Sci. 35, 1046–1053 (1995)Google Scholar
  9. 9.
    P. Constans, X. Fradera, L. Amat, R. Carbó, Quantum molecular similarity measures (QMSM) and the atomic shell approximation (ASA), in Proceedings of the 2nd Girona Seminar on Molecular Similarity. Advances in Molecular Similarity, July 1995, vol. 1. (Jai Press Inc., Greenwich, CT, 1996), pp. 187–211Google Scholar
  10. 10.
    Amat L., Carbó-Dorca R.: J. Comput. Chem. 18, 2023–2029 (1997)CrossRefGoogle Scholar
  11. 11.
    Amat L., Carbó-Dorca R.: J. Comput. Chem 20, 911–920 (1999)CrossRefGoogle Scholar
  12. 12.
    B.N. Plakhutin, E.V. Gorelik, N.N. Breslavskaya, J. Chem. Phys. 125, 204110-10 (2006)Google Scholar
  13. 13.
    Plakhutin B.N., Davidson E.R: J. Phys. Chem. A 113, 12386–12395 (2009)CrossRefGoogle Scholar
  14. 14.
    Davidson E.R, Plakhutin B.N.: J. Chem. Phys. 132, 184110–184114 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institut de Química ComputacionalUniversitat de GironaGironaSpain

Personalised recommendations