Journal of Mathematical Chemistry

, Volume 51, Issue 4, pp 1198–1210 | Cite as

A probabilistic evolution approach trilogy, part 3: temporal variation of state variable expectation values from Liouville equation perspective

Original Paper

Abstract

This is the third and therefore the final part of a trilogy on probabilistic evolution approach. The work presented here focuses on the probabilistic evolution determination for the state variables of a many particle system from classical mechanical point of view. Probabilistic evolution involves the expected value evolutions for all natural number Kronecker powers of the state variables, positions and momenta. We use the phase space distribution of the Liouville equation perspective to construct the expected values of the state variables’ Kronecker powers to define unknown temporal functions. The infinite number homogeneous linear ODEs with an infinite constant coefficient matrix are constructed by following the same steps as in the previous two works on quantum mechanics. The only difference is in the definitions of the expected values here. We also focus on a system of many harmonic oscillators to illustrate the block triangularity.

Keywords

Probabilistic evolution Expected value dynamics Evolution matrix Phase space distribution Elastic spring forces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Demiralp M., Demiralp E., Hernandez-Garcia L.: A probabilistic foundation for dynamical systems: theoretical background and mathematical formulation. J. Math. Chem. 58, 850–869 (2012)CrossRefGoogle Scholar
  2. 2.
    Demiralp E., Demiralp M., Hernandez-Garcia L.: A probabilistic foundation for dynamical systems: phenomenological reasoning and principal characteristics of probabilistic evolution. J. Math. Chem. 58, 870–880 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Demiralp, E. Demiralp, A contemporary linear representati on theory for ordinary differential equations: probabilistic evo lutions and related approximants for unidimensional autonomous systems. J. Math. Chem. (2012). doi: 10.1007/s10910-012-0070-2
  4. 4.
    M. Demiralp, E. Demiralp, A contemporary linear representati on theory for ordinary differential equations: multilinear algeb ra in folded arrays (folarrs) perspective and its use in multidi mensional case. J. Math. Chem. (2012). doi: 10.1007/s10910-012-0064-0
  5. 5.
    Demiralp M.: Fluctuationlessness theorem to approximate univa riate functions’ matrix representations. SEAS Trans. Math. 8, 258–267 (2009)Google Scholar
  6. 6.
    GözükırmızıC., Demiralp M.: The application of the fluctuation expansion with extended basis set to numerical in tegration. WSEAS Trans. Math. 8, 205–212 (2009)Google Scholar
  7. 7.
    Demiralp M.: No fluctuation approximation in any desired precision for univariate matrix representations. J. Math. Chem. 47, 99–110 (2010)CrossRefGoogle Scholar
  8. 8.
    Altay N., Demiralp M.: Numerical solution of ordinary differential equations by Fluctuationlessness Theorem. J. Math. Chem. 47, 1323–1344 (2010)CrossRefGoogle Scholar
  9. 9.
    Demiralp M.: Data production for a multivariate function on an orthogonal hyperprismatic grid via fluctuation free matrix representation: completely filled grid case. IJEECE 1, 61–76 (2010)Google Scholar
  10. 10.
    E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, (Springer, Berlin, 1993) (ISBN 978-3-540-56670-0)Google Scholar
  11. 11.
    E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. (Springer, Berlin, 1996) (ISBN 978-3-540-60452-5)Google Scholar
  12. 12.
    Vigo-Aguiar J., Ferrándiz M.J.: VSVO multistep formulae adapted to perturbed second-order differential equations. Appl. Math. Lett. 11(3), 83–87 (1998)CrossRefGoogle Scholar
  13. 13.
    J.C. Butcher, Numerical Methods for Ordinary Differential E quations (Wiley, New York, 2003) (ISBN 978-0-471 −96758-3)Google Scholar
  14. 14.
    J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edn. (Springer, Berlin, 2002) (ISBN 978-0-521-88068-8)Google Scholar
  15. 15.
    Oevel W., Postel F., Wehmeier S., Gerhard J.: The MuPAD Tutorial. Springer, New York (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Istanbul Teknik Üniversitesi Bilişim EnstitüsüIstanbulTurkey

Personalised recommendations