Journal of Mathematical Chemistry

, Volume 51, Issue 4, pp 1187–1197

A probabilistic evolution approach trilogy, part 2: spectral issues for block triangular evolution matrix, singularities, space extension

Original Paper

Abstract

This is the second part of the trilogy on the probabilistic evolution approach and related to the quantum dynamical systems as the first part is. In this sense this work extends the content of the first part to the perhaps secondary but very important details. The spectral investigation of the evolution matrix reveals important issues first and brings the importance of the zero eigenvalues to the surface. The asymptotic convergence possibility and difficulties arising from there can be softened by redefining the state vector. Beside the redefinition, the dimensional extension by adding new elements to the state vector may facilitate the utilization of evolution matrix by bringing conicality or at least multinomiality. The space extension may also help us to deal with singular Hamiltonian systems. All these issues are focused on rather phenomenologically. Illustrative or not, no comprehensive implementation is given since the main purpose is just conceptuality.

Keywords

Probabilistic evolution equations Quantum expected values Coordinate transforms Space extension Singular Hamiltonians 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Demiralp M., Demiralp E., Hernandez-Garcia L.: A probabilistic foundation for dynamical systems: theoretical background and mathematical formulation. J. Math. Chem. 58, 850–869 (2012)CrossRefGoogle Scholar
  2. 2.
    Demiralp E., Demiralp M., Hernandez-Garcia L.: A probabilistic foundation for dynamical systems: phenomenological reasoning and principal characteristics of probabilistic evolution. J. Math. Chem. 58, 870–880 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Demiralp, E. Demiralp, A contemporary linear representation theory for ordinary differential equations: probabilistic evolution s and related approximants for unidimensional autonomous systems. J. Math. Chem. (2012). doi:10.1007/s10910-012-0070-2
  4. 4.
    M. Demiralp, E. Demiralp, A contemporary linear representation theory for ordinary differential equations: multilinear algebra in folded arrays (folarrs) perspective and its use in multidimensional case. J. Math. Chem. (2012). doi:10.1007/s10910-012-0064-0
  5. 5.
    M. Demiralp, A probabilistic evolution approach trilogy, part1: quantum expectation value evolutions, block triangularity and conicality, truncation approximants and their convergence (the first paper of this trilogy, companion paper) (2012). doi:10.1007/s10910-012-0079-6
  6. 6.
    Demiralp M.: Convergence issues in the Gaussian weighted multi dimensional fluctuation expansion for the univariate numerical integration. WSEAS Trans. Math. 4, 486–492 (2005)Google Scholar
  7. 7.
    Demiralp M.: Fluctuationlessness theorem to approximate univariate functions’ matrix representations. WSEAS Trans. Math. 8, 258–267 (2009)Google Scholar
  8. 8.
    Gözükirmizi C., Demiralp M.: The application of the fluctuation expansion with extended basis set to numerical integration. WSEAS Trans. Math. 8, 205–212 (2009)Google Scholar
  9. 9.
    Demiralp M.: No fluctuation approximation in any desired precision for univariate matrix representations. J. Math. Chem. 47, 99–110 (2010)CrossRefGoogle Scholar
  10. 10.
    Altay N., Demiralp M.: Fluctuationlessness theorem and its application to boundary value problems of ODEs. WSEAS Trans. Math. 8, 199–204 (2009)Google Scholar
  11. 11.
    Altay N., Demiralp M.: Numerical solution of ordinary differential equations by fluctuationlessness theorem. J. Math. Chem. 47, 1323–1344 (2010)CrossRefGoogle Scholar
  12. 12.
    Demiralp M.: Data production for a multivariate function on an orthogonal hyperprismatic grid via fluctuation free matrix representation: completely filled grid case. IJEECE 1, 61–76 (2010)Google Scholar
  13. 13.
    Baykara N., Gürvit E., Demiralp M.: The fluctuationlessness approach to the numerical integration of functions with a single variable by integrating Taylor expansion with explicit remainder term. J. Math. Chem. 49(2), 393–406 (2010). doi:10.1007/s10910-010-9748-5 CrossRefGoogle Scholar
  14. 14.
    Gürvit E., Baykara N.A., Demiralp M.: Numerical integration of bivariate functions over a non rectangular area by using fluctuationlessness theorem. WSEAS Trans. Math. 8(5), 193–198 (2009)Google Scholar
  15. 15.
    Gürvit E., Baykara N.A., Demiralp M.: Multi nodalset fluctuation free integration in Taylor remainder’s evaluation. AIP Conf. Proc. 1281, 1944 (2010). doi:10.1063/1.3498309 CrossRefGoogle Scholar
  16. 16.
    Baykara N.A., Gürvit E., Demiralp M.: Multi nodalset fluctuation free approximation in Taylor remainder’s evaluation. AIP Conf. Proc. 1281, 1939 (2010). doi:10.1063/1.3498307 CrossRefGoogle Scholar
  17. 17.
    Gürvit E., Baykara N.A., Demiralp M.: Numerical integration of bivariate functions using fluctuationlessness theorem with a trigonometric basis function to deal with highly oscillatory functions. Math. Methods Appl. Comput. 1, 400–405 (2009)Google Scholar
  18. 18.
    Baykara N.A., Gürvit E., Demiralp M.: Numerical approximation to multivariate functions using fluctuationlessness theorem with a trigonometric basis function to deal with highly oscillatory functions. Math. Methods Appl. Comput. 1, 394–399 (2009)Google Scholar
  19. 19.
    Gürvit E., Baykara N.A., Demiralp M.: Evaluation of multivariate integrals via fluctuationlessness theorem and Taylor’s remainder. AIP Conf. Proc. 1148, 128–132 (2009)CrossRefGoogle Scholar
  20. 20.
    Baykara N.A., Gürvit E., Demiralp M.: A hybridized finite Taylor formula by fluctuation free remainder term for a multivariable function approximation. AIP Conf. Proc. 1148, 21–24 (2009)CrossRefGoogle Scholar
  21. 21.
    Gürvit E., Baykara N.A., Demiralp M.: Evaluation of univariate integrals via fluctuationlessness theorem. AIP Conf. Proc. 1048, 239 (2008). doi:10.1063/1.2990901 CrossRefGoogle Scholar
  22. 22.
    Baykara N.A., Gürvit E., Demiralp M.: A hybridized finite Taylor formula by fluctuation free remainder term for univariate function approximation. AIP Conf. Proc. 1048, 87 (2008). doi:10.1063/1.2991072 CrossRefGoogle Scholar
  23. 23.
    Demiralp M., Rabitz H.: Lie algebraic factorization of multi variable evolution operators: definition and the solution of the canonical problem. Int. J. Eng. Sci. 31, 307331 (1993)Google Scholar
  24. 24.
    Demiralp M., Rabitz H.: Lie algebraic factorization of multi variable evolution operators: convergence theorems for the canonical case. Int. J. Eng. Sci. 37, 333346 (1993)Google Scholar
  25. 25.
    E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems. (Springer, Berlin, 1993). ISBN 978-3-540-56670-0.Google Scholar
  26. 26.
    E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems, 2nd edn. (Springer, Berlin, 1996). ISBN 978-3-540-60452-5Google Scholar
  27. 27.
    Vigo-Aguiar J., Ferrándiz J.M.: VSVO multistep formulae adapted to perturbed second-order differential equations. Appl. Math. Lett. 11(3), 83–87 (1998)CrossRefGoogle Scholar
  28. 28.
    J.C. Butcher, Numerical Methods for Ordinary Differential Equations. (John Wiley-Sons, New York, 2003). ISBN 978-0-471-96758-3Google Scholar
  29. 29.
    J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edn. (Springer, Berlin, 2002). ISBN 978-0-521-88068-8Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Istanbul Teknik Üniversitesi Bilişim EnstitüsüIstanbulTurkey
  2. 2.Department of MathematicsMarmara UniversityIstanbulTurkey

Personalised recommendations