Journal of Mathematical Chemistry

, Volume 51, Issue 1, pp 239–264

Enumeration of substitutional isomers with restrictive mutual positions of ligands. II. Counts with restrictions on (sub)symmetry

Original Paper

Abstract

The present paper extends our previous discussion of paper I on “Overall Counts”, still focusing on enumerations of substitutional isomers with restrictive positioning of ligands. But now, we address the counts of such isomers with a specified subsymmetry of the symmetry of the parent skeleton. Constrained analogs of Pólya’s cycle index still appear, but now we introduce more powerful technical tools to include subsymmetry-specified generalizations of the cycle index. This involves differential-operator approach for analytically treating newly derived hybrids of the the generalized cycle index and suitable F-polynomials. As a simple illustration of the general mathematical exposition, a specific problems are solved and some tasks for possible further consideration are also stated, where again the Maple symbolic manipulation package proves useful.

Keywords

Enumeration Substitutional isomers Restrictive substitution Symmetry-restrictive F-polynomials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.R. Rosenfeld, D.J. Klein, Enumeration of substitutional isomers with restrictive mutual positions of ligands. I. Overall counts. J. Math. Chem. (2012). doi:10.1007/s10910-012-0056-0
  2. 2.
    G. Pólya, Kombinatorische Anzahlbestimungen für Gruppen, Graphen und chemische Verbindungen. Acta Math. 68, 145–254 (1937). English translation in: G. Pólya, R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (Springer, Berlin, 1987). Russian translation in: Perechislitel’nye Zadachi Kombinatornogo Analiza (Sbornik Perevodov) = Enumeration Problems of Combinatorial Analysis (Collections of Translations), ed. by G.P. Gavrilov (Mir, Moscow, 1979), pp. 36–136Google Scholar
  3. 3.
    Kerber A.: Applied Finite Group Actions. Springer, Berlin (1999)Google Scholar
  4. 4.
    Harary F., Palmer E.M.: Graphical Enumeration. Academic Press, New York (1973)Google Scholar
  5. 5.
    Farrell E.J.: On a general class of graph polynomials. J. Combin. Theory B 26(2), 111–122 (1979)CrossRefGoogle Scholar
  6. 6.
    Farrell E.J.: On a class of polynomials obtained from circuits in a graph and its application to characteristic polynomials of graphs. Discret. Math. 25, 121–133 (1979)CrossRefGoogle Scholar
  7. 7.
    Farrell E.J., Grell J.C.: The circuit polynomial and its relation to other polynomials. Caribean J. Math. 2(1/2), 15–24 (1982)Google Scholar
  8. 8.
    Farrell E.J.: An introduction to matching polynomials. J. Combin. Theory Ser. B 27, 75–86 (1979)CrossRefGoogle Scholar
  9. 9.
    V.R. Rosenfeld, Resolving a combinatorial problem of crystallography, Deposited in VINITI (1982), 16.09.82, no. 4877–82 Dep. (Russian)Google Scholar
  10. 10.
    V.R. Rosenfeld, The generalized Pólya’s theorem (A novel approach for enumerating equivalence classes of objects with a prescribed automorphism subgroup), in: Proceedings of The Sixth Caribbean Conference in Graph Theory and Computing, The University of the West Indies, St. Augustine, Trinidad, West Indies, 1991 (The University of West Indies, St. Augustine, 1991), pp. 240–259.Google Scholar
  11. 11.
    V.R. Rosenfeld, Yet another generalization of Pólya’s theorem: Enumerating equivalence classes of objects with a prescribed monoid of endomorphisms. MATCH Commun. Math. Comput. Chem. 43, 111–130 (2001). (see Erratum on p. 125: A lost multiplier s just after the sign ∑ in (16)!).Google Scholar
  12. 12.
    Rota G.-C., Smith D.A.: Enumeration under group action. Ann. Sci. Norm. Super. Pisa. Cl. Sci. Ser. 4, 637–646 (1977)Google Scholar
  13. 13.
    Burnside W.: Theory of Groups of Finite Order, 2nd edn. Cambridge University Press, Cambridge (1911)Google Scholar
  14. 14.
    Fujita S.: Symmetry and Combinatorial Enumeration in Chemistry. Springer, Berlin (1991)CrossRefGoogle Scholar
  15. 15.
    Rota G.-C.: Foundations of Combinatorial Theory. I. Theory of Möbius Functions. Prob. Theory Relat. Fields 2(4), 340–368 (1964)Google Scholar
  16. 16.
    V.R. Rosenfeld, The enumeration of admissible subgraphs of the n-Dimensional Ising problem (n ≥ 1), in Calculational Methods in Physical Chemistry, ed. by Y.G. Papulov (KGU, Kalinin’s State University, Kalinin, 1988), pp. 15–20 (Russian)Google Scholar
  17. 17.
    Rosenfeld V.R., Gutman I.: A novel approach to graph polynomials. MATCH Commun. Math. Comput. Chem. 24, 191–199 (1989)Google Scholar
  18. 18.
    Rosenfeld V.R., Gutman I.: On the graph polynomials of a weighted graph. Coll. Sci. Papers Fac. Sci. Kragujevac 12, 49–57 (1991)Google Scholar
  19. 19.
    Redfield J.H.: The theory of group reduced distributions. Am. J. Math. 49, 433–455 (1927)CrossRefGoogle Scholar
  20. 20.
    Neumann P.M.: A lemma that is not Burnside’s. Math. Sci. 4(2), 133–141 (1979)Google Scholar
  21. 21.
    Ruch E., Hässelbarth W., Richter B.: Doppelnebenklassen als Klassenbegriff und Nomenklaturprinzip für Isomere und ihre Abzälung, Theoret. Chim. Acta 19(3/5), 288–300 (1970)Google Scholar
  22. 22.
    Ruch E., Klein D.J.: Double costs in chemistry and physics. Theor. Chim. Acta 63, 447–472 (1983)Google Scholar
  23. 23.
    De Bruijn N.G.: A survey of generalizations of Pólya’s enumeration theorem. Niew Archief voor Wiskunde 19(2), 89–112 (1971)Google Scholar
  24. 24.
    Merris R.: Pólya’s counting theorem via tensors. Am. Math. Mon. 88, 179–185 (1981)CrossRefGoogle Scholar
  25. 25.
    Hässelbarth W.: A note on Pólya enumeration theory. Theor. Chim. Acta 66, 91–110 (1984)CrossRefGoogle Scholar
  26. 26.
    Farrell E.J., Rosenfeld V.R.: Block and articulation node polynomials of the generalized rooted product of graphs. J. Math. Sci. (India) 11(1), 35–47 (2000)Google Scholar
  27. 27.
    Klein D.J., Cowley A.H.: Permutational isomerism with bidentate ligands and other constraints. J. Am. Chem. Soc. 100, 2593–2599 (1978)CrossRefGoogle Scholar
  28. 28.
    Klein D.J.: Rigorous results for branched polymer models with excluded volume. J. Chem. Phys. 75, 5186–5189 (1981)CrossRefGoogle Scholar
  29. 29.
    D.J. Klein, A. Ryzhov, V. Rosenfeld, Permutational isomers on a molecular skeleton with neighbor-excluding ligands. J. Math. Chem. 45(4), 892–909 (2008). Erratum, ibid., p. 910Google Scholar
  30. 30.
    Balaban, A.T. (ed): Chemical Applications of Graph Theory. Academic Press, London (1976)Google Scholar
  31. 31.
    Cameron P.J., Jackson B., Rudd J.D.: Orbit-counting polynomials for graphs and codes. Discret. Math. 308, 920–930 (2008)CrossRefGoogle Scholar
  32. 32.
    Rudd J.D.: Tutte polynomials for counting and classifying orbits. Discret. Math. 310, 206–222 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Mathematical Chemistry Group, Department of Marine SciencesTexas A&M University at GalvestonGalvestonUSA

Personalised recommendations