Advertisement

Journal of Mathematical Chemistry

, Volume 51, Issue 1, pp 73–107 | Cite as

Systematic procedure for reduction of kinetic mechanisms of complex chemical processes and its software implementation

  • A. V. Lebedev
  • M. V. Okun
  • V. A. Chorkov
  • P. M. Tokar
  • M. Strelkova
Original Paper

Abstract

Feasibility of multidimensional hydrodynamic modeling depends critically on the availability of accurate reduced kinetic mechanisms of physical and chemical processes taking place in the system. Such mechanisms should describe the processes under consideration within a specified error tolerance in the range of initial conditions of interest while keeping the number of species and reactions as small as possible. We have developed an advanced tool for reduction of detailed kinetic mechanisms with a minimal human effort. The tool includes 10 reduction and 2 analysis methods which are based on the results of zero-dimensional modeling. The methods can be combined and applied in sequence. The reduction tool has been implemented as a part the Chemical Workbench computational package and has been tested for a number of large kinetic mechanisms of gas-phase processes. Using this tool, we reduced the mechanism of tar gasification from 177 species and 879 reversible reactions to only 83 species and 278 reactions, while the mechanism of methane combustion initially involving 127 species and 1,206 reactions was reduced to 42 species and 173 reactions.

Keywords

Chemical kinetics Mechanism reduction Kinetic simulations Software for the mechanism reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10910_2012_65_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1,237 kb)

References

  1. 1.
    Xia A.G., Michelangeli D.V.: Atmos. Chem. Phys. 9, 4341 (2009)CrossRefGoogle Scholar
  2. 2.
    Strelkova M.I., Safonov A.A.: Combust. Sci. Tech. 180, 1788 (2008)CrossRefGoogle Scholar
  3. 3.
    Cremer M.A., Montgomery C.J., Wang D.H., Heap M.P., Chen J.-Y.: Proc. Combust. Inst. 28, 2427 (2000)CrossRefGoogle Scholar
  4. 4.
    Shorter J.A., Ip P.C.: J. Phys. Chem. 103, 7192 (1999)CrossRefGoogle Scholar
  5. 5.
    Singh S., Powers J.M., Paolucci S.: J. Chem. Phys. 117, 1482 (2002)CrossRefGoogle Scholar
  6. 6.
    Pope S.B.: Combust. Theory Model. 1, 41 (1997)CrossRefGoogle Scholar
  7. 7.
    Valorani M., Creta F., Donato F., Najm H.N., Goussis D.A.: Proc. Combust. Inst. 31, 483 (2007)CrossRefGoogle Scholar
  8. 8.
    Pepiot-Desjardins P., Pitsch H.: Combust. Flame 154, 67 (2008)CrossRefGoogle Scholar
  9. 9.
    Vajda S., Valkó P., Turányi T.: Int. J. Chem. Kinet. 17, 55 (1985)CrossRefGoogle Scholar
  10. 10.
    Chen J.-Y.: Transact. Aeronaut. Astronaut. Soc. Rep. China 33, 59–67 (2001)Google Scholar
  11. 11.
    Goussis D.A.: J. Comput. Phys. 128, 261 (1996)CrossRefGoogle Scholar
  12. 12.
    Valorani M., Creta F.: Combust. Flame 146, 29 (2006)CrossRefGoogle Scholar
  13. 13.
    Sun W., Chen Z.: Combust. Flame 157, 1298 (2010)CrossRefGoogle Scholar
  14. 14.
    Massias A., Diamantis D.: Combust. Flame 117, 685 (1999)CrossRefGoogle Scholar
  15. 15.
    Lu T., Ju Y., Law C.K.: Combust. Flame 126, 1445 (2001)CrossRefGoogle Scholar
  16. 16.
    Shi Y., Ge H.-W., Brakora J.L., Reitz R.D.: Energy Fuels 24, 1646 (2010)CrossRefGoogle Scholar
  17. 17.
    Turanyi T.: Comp. Chem. 14, 253 (1990)CrossRefGoogle Scholar
  18. 18.
    Deminsky M., Chorkov V., Belov G., Cheshigin I., Knizhnik A., Shulakova E., Shulakov M., Iskandarova I., Alexandrov V., Petrusev A., Kirillov I., Strelkova M., Umanski S., Potapkin B.: Comput. Mater. Sci. 28, 169 (2003)CrossRefGoogle Scholar
  19. 19.
    Dickinson R.P., Gelinas R.J.: J. Comput. Phys. 21, 123 (1976)CrossRefGoogle Scholar
  20. 20.
    Turányi T., Bérces T., Vajda S.: Int. J. Chem. Kinet. 21, 83 (1989)CrossRefGoogle Scholar
  21. 21.
    Whitehouse L.E., Tomlin A.S.: Atmos. Chem. Phys. 4, 2057 (2004)CrossRefGoogle Scholar
  22. 22.
    Turanyi T.: New J. Chem. 14, 795 (1990)Google Scholar
  23. 23.
    Brocka E.E., Savage Ph.E.: Chem. Eng. Sci. 53, 857 (1998)CrossRefGoogle Scholar
  24. 24.
    Glarborg P., Miller J.A.: Combust. Flame 65, 177 (1986)CrossRefGoogle Scholar
  25. 25.
    Lu T., Law C.K.: Proc. Combust. Inst. 30, 1333 (2005)CrossRefGoogle Scholar
  26. 26.
    Kazakov A., Chaos M.: J. Phys. Chem. 110, 7003 (2006)CrossRefGoogle Scholar
  27. 27.
    Lam S.H., Goussis D.A.: Int. J. Chem. Kinet. 26, 461 (1994)CrossRefGoogle Scholar
  28. 28.
    Revel J., Boettner J.C.: J. Chim. Phys. Phys. Chim. Biol. 91, 365 (1994)Google Scholar
  29. 29.
    Brown N.J., Li G.: Int. J. Chem. Kinet. 29, 393 (1997)CrossRefGoogle Scholar
  30. 30.
    A.V. Lebedev, M.V. Okun, Systematic procedure for simplification of kinetic mechanisms of chemical processes (Phys. Chem. Kinet. In Gas Dyn. 10 (2010)), http://www.chemphys.edu.ru/pdf/2010-09-06-001.pdf. Accessed 3 May 2012
  31. 31.
    I.Gy. Zsély, I. Virág, T. Turányi, in Proceedings of the 4th Mediterranean Combustion Symposium, ed. by F. Beretta, N. Selçuk, M.S. Mansour. (Lisbon, Portugal, 2005), paper IX. 4Google Scholar
  32. 32.
    A.S. Tomlin, T. Turányi, M.J. Pilling, in Low temperature combustion and autoignition, ed. By M.J. Pilling, G. Hancock. (Elsevier, Amsterdam, 1997), pp. 293–437Google Scholar
  33. 33.
    Konnov A.A.: Combust. Flame 156, 2093 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. V. Lebedev
    • 1
  • M. V. Okun
    • 2
  • V. A. Chorkov
    • 3
  • P. M. Tokar
    • 3
  • M. Strelkova
    • 2
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  2. 2.National Research Centre “Kurchatov Institute”MoscowRussia
  3. 3.Kintech Lab LtdMoscowRussia

Personalised recommendations