Journal of Mathematical Chemistry

, Volume 50, Issue 10, pp 2689–2702 | Cite as

On characterizing proteomics maps by using weighted Voronoi maps

  • Rok Orel
  • Milan Randić
Original Paper


In contrast to the standard construction of Voronoi regions, in which the boundaries between different regions are at equal distance from the given points, we consider the construction of modified Voronoi regions obtained by giving greater weights to spots reported to have higher abundance. Specifically we are interested in applying this approach to 2-D proteomics maps and their numerical characterization. As will be seen, the boundaries of the weighted Voronoi regions are sensitive to the relative abundances of the protein spots and thus the abundances of protein spots, the z component of the (x, y, z) triplet, are automatically incorporated in the numerical analysis of the adjacency matrix, rather than used to augment the adjacency matrix as non-zero diagonal matrix elements. The outlined approach is general and it may be of interest for numerical analyses of other maps that are defined by triplets (x, y, z) as input information.


Proteomics maps Voronoi regions LY171833 peroxisome proliferator Weighted Voronoi regions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Randić M.: Quantitative Characterization of Proteomics Maps by Matrix Invariants, (ed.). by Conn., P.M. Handbook of Proteomics Methods, pp. 429–450. Humana Press, Inc., Totowa, NJ (2003)CrossRefGoogle Scholar
  2. 2.
    Randić M., Zupan J., Balaban A.T., Vikić-Topić D., Plavšić D.: Graphical representation of proteins. Chem. Rev. 111, 790–862 (2011)CrossRefGoogle Scholar
  3. 3.
    González-Díaz H., González-Díaz Y., Santana L., Ubeira F.M., Uriarte E.: Proteomics, networks and connectivity indices. Proteomics 8, 750–778 (2008)CrossRefGoogle Scholar
  4. 4.
    Randić M., Orel R.: On numerical characterization of proteomics maps based on partitioning of 2-D maps into Voronoi regions. J. Math. Chem. 49, 1759–1768 (2011)CrossRefGoogle Scholar
  5. 5.
    Randić M., Kleiner A.F., DeAlba L.M.: Distance/distance matrices. J. Chem. Inf. Comput. Sci. 34, 277–286 (1994)CrossRefGoogle Scholar
  6. 6.
    Randić M.: Novel graph theoretical approach to heteroatom in quantitative structure-activity relationship. Intel. Lab. Syst. 10, 213–227 (1991)CrossRefGoogle Scholar
  7. 7.
    Randić M.: Topological Indices, (ed.) by Schleyer, P.V.R., Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., Schreiner, P.R. The Encyclopedia of Computational Chemistry, pp. 3018–3032. Wiley, Chichester (1998)Google Scholar
  8. 8.
    Devillers J., Balaban A.T.: Topological Indices and Related Descriptors in QSAR and QSPR. CRC Press, Boca Raton, FL (2000)Google Scholar
  9. 9.
    Anderson N.L., Esquer-Blasco R., Richardson F., Foxworthy P., Eacho P.: The effects of peroxisome proliferations on protein abundances in mouse liver. Toxicol. Appl. Pharmacol. 137, 75–89 (1996)CrossRefGoogle Scholar
  10. 10.
    Randić M., Novič M., Vračko M.: On characterization of dose variations of 2-D proteomics maps by matrix invariants. J. Proteome Res. 1, 217–226 (2002)CrossRefGoogle Scholar
  11. 11.
    Randić M., Estrada E.: Order from chaos: observing hormesis at the proteome level. J. Proteome Res. 4, 2133–2136 (2005)CrossRefGoogle Scholar
  12. 12.
    Randić M.: On graphical and numerical characterization of proteomics maps. J. Chem. Inf. Comput. Sci. 41, 1330–1338 (2001)CrossRefGoogle Scholar
  13. 13.
    Randić M., Zupan J., Novič M.: On 3-D graphical representation of proteomics maps and their numerical characterization. J. Chem. Inf. Comput. Sci. 41, 1339–1344 (2001)CrossRefGoogle Scholar
  14. 14.
    Randić M., Witzmann F., Vračko M., Basak S.C.: On characterization of proteomivcs maps and chemically induced chanes in proteomes using matrix invariants: application to peroxisome proliferators. Med. Chem. Res. 10, 456–479 (2001)Google Scholar
  15. 15.
    Randić M., Zupan J., Novič M., Gute B.D., Basak S.C.: Novel matrix invariants for characterization of changes of proteoics maps. SAR QSAR Environ. Res. 13, 689–703 (2002)CrossRefGoogle Scholar
  16. 16.
    Randić M., Lerš N., Vukičević D., Plavšić D., Gute B.D., Basak S.C.: Canonical labeling of proteome maps. J. Proteome Res. 4, 1347–1352 (2005)CrossRefGoogle Scholar
  17. 17.
    Randić M.: A graph theoretical characterization of proteomics maps. Int. J. Quantum Chem. 90, 848–858 (2002)CrossRefGoogle Scholar
  18. 18.
    Randić M., Novič M., Vračko M., Plavšić D.: Study of proteome maps using partial ordering. J. Theor. Biol. 266, 21–28 (2010)CrossRefGoogle Scholar
  19. 19.
    Bajzer Ž., Randić M., Plavšić D., Basak S.C.: Novel map descriptors for characterization of toxic effects in proteomics maps. J. Mol. Graph. Model. 22, 1–9 (2003)CrossRefGoogle Scholar
  20. 20.
    Randić M., Lerš N., Plavšić D., Basak S.C.: Characterization of 2-D proteome maps based on the nearest neighborhoods of spots. Croat. Chem. Acta 77, 345–351 (2004)Google Scholar
  21. 21.
    Randić M., Novič M., Vračko M.: Novel characterization of proteomics maps by sequential neighborhood of protein spots. J. Chem. Inf. Model. 45, 1205–1213 (2005)CrossRefGoogle Scholar
  22. 22.
    Randić M., Lerš N., Plavšić D., Basak S.C.: On invariants of a 2-D proteome map derived from neighborhood graphs. J. Proteome Res. 3, 778–785 (2004)CrossRefGoogle Scholar
  23. 23.
    Randić M., Orel R.: On numerical characterization of proteomics maps based on partitioning of 2-D maps into Voronoi regions. J. Math. Chem. 49, 1759–1768 (2011)CrossRefGoogle Scholar
  24. 24.
    Voronoi G.: Nouvelles applications des paramètres continus à à la théorie des forms quadratiques. J. Reine Angewandte Math. 133, 97–178 (1907)Google Scholar
  25. 25.
    Delaunay B: Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdel. Mat. Estest. Nauk 7, 793–800 (1934)Google Scholar
  26. 26.
    Kowalski B.R., Bender C.F.: Pattern recognition. Powerful approach to interpreting chemical data. J. Am. Cem. Soc. 94, 5632–5639 (1972)CrossRefGoogle Scholar
  27. 27.
    Ash P.F., Bolker E.D.: Generalized Dirichlet tessellations. Geometrie Dedicata 20, 209–243 (1986)Google Scholar
  28. 28.
    L. Mu, WVD2009 (Multiplicatively weighted Voronoi diagram, computer program) (2009)

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.XLABLjubljanaSlovenia
  2. 2.National Institute of ChemistryLjubljanaSlovenia

Personalised recommendations