Journal of Mathematical Chemistry

, Volume 51, Issue 1, pp 7–20

Information-theoretic multiplicities of chemical bond in Shull’s model of H2

Open Access
Original Paper

Abstract

Alternative information-theoretic (IT) measures of the chemical bond multiplicity and its covalent/ionic composition in the orbital communication theory (OCT) are examined using Shull’s natural orbital (NO) model of the homopolar bond in H2. In OCT a molecule is treated as an information (probability-scattering) system, generated by the network of conditional probabilities (from the quantum mechanical superposition principle) linking elementary events of the adopted perspective. For the first time this atomic orbital (AO) invariant, two-NO description of Shull allows one to examine in several alternative representations the behavior of the previously adopted IT indices, of the channel average communication noise (OCT-covalency) and information flow (OCT-ionicity), with changing internuclear distance R, from the united atom (R = 0 ) to the separated atoms limit (SAL) (R → ∞). The adopted references include the two-electron atomic and ionic functions of the model, as well as the alternative one-electron functions, of the AO and NO sets, respectively. The numerical results for the Wang function description of H2 are reported and a general agreement with the accepted chemical intuition is tested. Joint probabilities of Shull’s reference states are linked to the energy partitioning. The incorrect SAL behavior of the OCT-ionicity index, giving rise to the constant (interaction independent) overall multiplicity measure, emphasizes a need for a revision of these IT bond descriptors. The modified set of indices is proposed, reflecting the complementary localization (determinicity) and delocalization (indeterminicity) aspects of the communication system in question. The novel IT-ionicity now reflects the diagonal (intra-orbital, additive) information propagation in the molecular channel, while the modified IT-covalency accordingly measures the effect of its off-diagonal (inter-orbital, nonadditive) probability scatterings. These components are shown to give rise to the interaction strength dependent overall IT bond-order, which adequately reflects the chemical intuition.

Keywords

Bond ionic/covalent components Bond multiplicity/order Chemical bond descriptors Energy partitioning Information theory Molecular communication systems Natural orbitals Orbital communication theory Shull model of H2 

References

  1. 1.
    Nalewajski R.F.: Information Theory of Molecular Systems. Elsevier, Amsterdam (2006)Google Scholar
  2. 2.
    Nalewajski R.F.: Information Origins of the Chemical Bond. Nova, New York (2010)Google Scholar
  3. 3.
    Nalewajski R.F.: Perspectives in Electronic Structure Theory. Springer, Berlin (2012)CrossRefGoogle Scholar
  4. 4.
    R.F. Nalewajski, K. Jug, in Reviews of Modern Quantum Chemistry: A Celebration of the Contributions of Robert G. Parr, ed. by K.D. Sen (World Scientific, Singapore, 2002), vol. I, p. 148Google Scholar
  5. 5.
    Parr R.G., Ayers P.W., Nalewajski R.F.: J. Phys. Chem. A 109, 3957 (2005)CrossRefGoogle Scholar
  6. 6.
    Fisher R.A.: Proc. Camb. Phil. Soc. 22, 700 (1925)CrossRefGoogle Scholar
  7. 7.
    Frieden B.R.: Physics from the Fisher Information—A Unification, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  8. 8.
    Shannon C.E.: Bell Syst. Technol. J. 27, 379, 623 (1948)Google Scholar
  9. 9.
    Shannon C.E., Weaver W.: The Mathematical Theory of Communication. University of Illinois, Urbana (1949)Google Scholar
  10. 10.
    Kullback S., Leibler R.A.: Ann. Math. Stat. 22, 79 (1951)CrossRefGoogle Scholar
  11. 11.
    Kullback S.: Information Theory and Statistics. Wiley, New York (1959)Google Scholar
  12. 12.
    Abramson N.: Information Theory and Coding. McGraw-Hill, New York (1963)Google Scholar
  13. 13.
    Pfeifer P.E.: Concepts of Probability Theory, 2nd edn. Dover, New York (1978)Google Scholar
  14. 14.
    Nalewajski R.F., Parr R.G.: Proc. Natl. Acad. Sci. USA 97, 8879 (2000)CrossRefGoogle Scholar
  15. 15.
    Nalewajski R.F., Parr R.G.: J. Phys. Chem. A 105, 7391 (2001)CrossRefGoogle Scholar
  16. 16.
    Nalewajski R.F., Świtka E., Michalak A.: Int. J. Quantum. Chem. 87, 198 (2002)CrossRefGoogle Scholar
  17. 17.
    Nalewajski R.F., Świtka E.: Phys. Chem. Chem. Phys. 4, 4952 (2002)CrossRefGoogle Scholar
  18. 18.
    Nalewajski R.F., Broniatowska E.: J. Phys. Chem. A. 107, 6270 (2003)CrossRefGoogle Scholar
  19. 19.
    Nalewajski R.F., Loska R.: Theor. Chem. Acc. 105, 374 (2001)CrossRefGoogle Scholar
  20. 20.
    Nalewajski R.F.: Phys. Chem. Chem. Phys. 4, 1710 (2002)CrossRefGoogle Scholar
  21. 21.
    Nalewajski R.F.: Chem. Phys. Lett. 372, 28 (2003)CrossRefGoogle Scholar
  22. 22.
    Nalewajski R.F.: Adv. Quant. Chem. 43, 119 (2003)CrossRefGoogle Scholar
  23. 23.
    Nalewajski R.F., Broniatowska E.: Theor. Chem. Acc. 117, 7 (2007)CrossRefGoogle Scholar
  24. 24.
    Hirshfeld F.L.: Theor. Chim. Acta (Berl.) 44, 129 (1977)CrossRefGoogle Scholar
  25. 25.
    Nalewajski R.F.: J. Phys. Chem. A 107, 3792 (2003)CrossRefGoogle Scholar
  26. 26.
    Nalewajski R.F.: Mol. Phys. 104, 255 (2006)CrossRefGoogle Scholar
  27. 27.
    Nalewajski R.F.: Ann. Phys. (Leipzig) 13, 201 (2004)CrossRefGoogle Scholar
  28. 28.
    Nalewajski R.F., Broniatowska E.: Chem. Phys. Lett. 376, 33 (2003)CrossRefGoogle Scholar
  29. 29.
    S. López-Rosa, PhD Thesis, University of Granada (2010)Google Scholar
  30. 30.
    Esquivel R.O., Flores-Gallegos N., Iuga C., Carrera E., Angulo J.C., Antolin J.: Theor. Chem. Acc. 124, 445 (2009)CrossRefGoogle Scholar
  31. 31.
    Nalewajski R.F.: Int. J. Quantum Chem. 108, 2230 (2008)CrossRefGoogle Scholar
  32. 32.
    Nalewajski R.F.: J. Math. Chem. 47, 667 (2010)CrossRefGoogle Scholar
  33. 33.
    Nalewajski R.F., de Silva P., Mrozek J.: THEOCHEM 954, 57 (2010)CrossRefGoogle Scholar
  34. 34.
    R.F. Nalewajski, P. de Silva, J. Mrozek, in Theoretical and Computational Developments in Modern Density Functional Theory, ed. by A.K. Roy (Nova Science Publishers, New York, 2012)Google Scholar
  35. 35.
    R.F. Nalewajski, in Chemical Information and Computation Challenges in 21st Century, ed. by M.V. Putz (Nova Science Publishers, NewYork, 2012), in pressGoogle Scholar
  36. 36.
    Nalewajski R.F., Köster A.M., Escalante S.: J. Phys. Chem. A 109, 10038 (2005)CrossRefGoogle Scholar
  37. 37.
    Becke A.D., Edgecombe K.E.: J. Chem. Phys. 92, 5397 (1990)CrossRefGoogle Scholar
  38. 38.
    Silvi B., Savin A.: Nature 371, 683 (1994)CrossRefGoogle Scholar
  39. 39.
    Savin A., Nesper R., Wengert S., Fässler T.F.: Angew. Chem. Int. Ed. Engl. 36, 1808 (1997)CrossRefGoogle Scholar
  40. 40.
    J. Contreras-García, M. Marqués, B. Silvi, J.M. Recio, in: Modern Charge-Density Analysis, ed. by C. Gatti, P. Macchi (Springer, Dordrecht, 2012), p. 625Google Scholar
  41. 41.
    Nalewajski R.F.: J. Phys. Chem. A 104, 11940 (2000)CrossRefGoogle Scholar
  42. 42.
    Nalewajski R.F.: Struct. Chem. 15, 391 (2004)CrossRefGoogle Scholar
  43. 43.
    Nalewajski R.F.: Mol. Phys. 102, 531, 547 (2004)Google Scholar
  44. 44.
    Nalewajski R.F.: Mol. Phys. 103, 451 (2005)CrossRefGoogle Scholar
  45. 45.
    R.F. Nalewajski, Mol. Phys. 104, 365, 493, 1977, 2533, 3339 (2006)Google Scholar
  46. 46.
    Nalewajski R.F.: Theor. Chem. Acc. 114, 4 (2005)CrossRefGoogle Scholar
  47. 47.
    Nalewajski R.F.: J. Math. Chem. 38, 43 (2005)CrossRefGoogle Scholar
  48. 48.
    Nalewajski R.F.: J. Math. Chem. 43, 265, 780 (2008)Google Scholar
  49. 49.
    Nalewajski R.F.: J. Math. Chem. 44, 414 (2008)Google Scholar
  50. 50.
    R.F. Nalewajski, J. Math. Chem. 45, 607, 709, 776, 1041 (2009)Google Scholar
  51. 51.
    Nalewajski R.F.: J. Phys. Chem. A 111, 4855 (2007)CrossRefGoogle Scholar
  52. 52.
    Nalewajski R.F.: Int. J. Quantum Chem. 109, 425, 2495 (2009)Google Scholar
  53. 53.
    Nalewajski R.F.: Adv. Quant. Chem. 56, 217 (2009)CrossRefGoogle Scholar
  54. 54.
    Nalewajski R.F.: J. Math. Chem. 47, 709 (2010)CrossRefGoogle Scholar
  55. 55.
    Nalewajski R.F.: J. Math. Chem. 49, 592 (2011)CrossRefGoogle Scholar
  56. 56.
    Nalewajski R.F., Szczepanik D.: J. Mrozek Adv. Quant. Chem. 61, 1 (2011)CrossRefGoogle Scholar
  57. 57.
    Nalewajski R.F., Szczepanik D., Mrozek J.: J. Math. Chem. 50, 1437 (2012)CrossRefGoogle Scholar
  58. 58.
    Nalewajski R.F.: J. Math. Chem. 49, 2308 (2011)CrossRefGoogle Scholar
  59. 59.
    Nalewajski R.F.: J. Math. Chem. 49, 806 (2011)CrossRefGoogle Scholar
  60. 60.
    Nalewajski R.F.: J. Math. Chem. 49, 371 (2010)CrossRefGoogle Scholar
  61. 61.
    Nalewajski R.F.: J. Math. Chem. 49, 546 (2010)CrossRefGoogle Scholar
  62. 62.
    Nalewajski R.F., Gurdek P.: J. Math. Chem. 49, 1226 (2011)CrossRefGoogle Scholar
  63. 63.
    Nalewajski R.F.: Int. J. Quantum Chem. 112, 2355 (2012)CrossRefGoogle Scholar
  64. 64.
    R.F. Nalewajski, Int. J. Quantum Chem. (in press)Google Scholar
  65. 65.
    R.F. Nalewajski, P. Gurdek, Struct. Chem. (M. Witko issue) (in press)Google Scholar
  66. 66.
    Shull H.: J. Am. Chem. Soc. 82, 1287 (1960)CrossRefGoogle Scholar
  67. 67.
    Shull H.: J. Am. Chem. Soc. 86, 1469 (1964)CrossRefGoogle Scholar
  68. 68.
    Shull H.: J. Phys. Chem. 66, 2320 (1962)CrossRefGoogle Scholar
  69. 69.
    Hagstrom S., Shull H.: Rev. Mod. Phys. 35, 624 (1963)CrossRefGoogle Scholar
  70. 70.
    Shull H., Prosser F.: J. Chem. Phys. 40, 233 (1964)CrossRefGoogle Scholar
  71. 71.
    Christoffersen R.E., Shull H.: J. Chem. Phys. 48, 1790 (1968)CrossRefGoogle Scholar
  72. 72.
    Christoffersen R.E.: Basic Principles and Techniques of Molecular Quantum Mechanics. Springer, New York (1989)CrossRefGoogle Scholar
  73. 73.
    Pauling L.: Nature of the Chemical Bond. Cornell University Press, Ithaca (1939)Google Scholar
  74. 74.
    Heitler W., London F.: Z. Phys. 44, 455 (1927)CrossRefGoogle Scholar
  75. 75.
    Dirac P.A.M.: The Principles of Quantum Mechanics, 4th edn. Clarendon, Oxford (1958)Google Scholar
  76. 76.
    Nalewajski R.F.: J. Math. Chem. 45, 709 (2009)CrossRefGoogle Scholar
  77. 77.
    Shaik S., Danovich D., Wu W., Hiberty P.C.: Nat. Chem. 1, 443 (2009)CrossRefGoogle Scholar
  78. 78.
    Wiberg K.A.: Tetrahedron 24, 1083 (1968)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of Theoretical ChemistryJagiellonian UniversityCracowPoland

Personalised recommendations