Journal of Mathematical Chemistry

, Volume 50, Issue 8, pp 2272–2280 | Cite as

Face-spiral codes in cubic polyhedral graphs with face sizes no larger than 6

  • Patrick W. Fowler
  • Mohammadreza Jooyandeh
  • Gunnar Brinkmann
Original Paper

Abstract

According to the face-spiral conjecture, first made in connection with enumeration of fullerenes, a cubic polyhedron can be reconstructed from a face sequence starting from the first face and adding faces sequentially in spiral fashion. This conjecture is known to be false, both for general cubic polyhedra and within the specific class of fullerenes. Here we report counterexamples to the spiral conjecture within the 19 classes of cubic polyhedra with positive curvature, i.e., with no face size larger than six. The classes are defined by triples {p3, p4, p5} where p3, p4 and p5 are the respective numbers of triangular, tetragonal and pentagonal faces. In this notation, fullerenes are the class {0, 0, 12}. For 11 classes, the reported examples have minimum vertex number, but for the remaining 8 classes the examples are not guaranteed to be minimal. For cubic graphs that also allow faces of size larger than 6, counterexamples are common and occur early; we conjecture that every infinite class of cubic polyhedra described by allowed and forbidden face sizes contains non-spiral elements.

Keywords

Polyhedra Graphs Graph algorithms Face-spirals Face-spiral conjecture Chemical nomenclature 

Mathematics Subject Classification

05C30 05C85 52B99 92E10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E.: C60: Buckminsterfullerene. Nature 318, 162–163 (1985)CrossRefGoogle Scholar
  2. 2.
    Krätschmer W., Lamb L.D., Fostiropoulos K., Huffman D.: Solid C60: a new form of carbon. Nature 347, 354–358 (1990)CrossRefGoogle Scholar
  3. 3.
    Fowler P.W., Manolopoulos D.E.: An Atlas of Fullerenes. Oxford University Press, Oxford (1995)Google Scholar
  4. 4.
    Fowler P.W., Manolopoulos D.E.: An Atlas of Fullerenes. Dover Publications Inc., New York (2006)Google Scholar
  5. 5.
    Eaton P.E., Cole T.W.: Cubane. J. Am. Chem. Soc. 86, 3157–3158 (1964)CrossRefGoogle Scholar
  6. 6.
    Katz T.J., Acton N.: Synthesis of prismane. J. Am. Chem. Soc. 95, 2738–2739 (1973)CrossRefGoogle Scholar
  7. 7.
    Cassar L., Eaton P.E., Halpern J.: Silver(I)- and palladium(II)-catalyzed isomerizations of cubane synthesis and characterization of cuneane. J. Am. Chem. Soc. 92, 6366–6368 (1970)CrossRefGoogle Scholar
  8. 8.
    Ternansky R.J., Balogh D.W., Paquette L.A.: Dodecahedrane. J. Am. Chem. Soc. 104, 4503–4504 (1982)CrossRefGoogle Scholar
  9. 9.
    Rassat A., Scalmani G., Seroussi D., Berthier G.: Structure and stability of spheroalkanes (CH)10. J. Mol. Struct. Theochem. 338, 31–41 (1995)CrossRefGoogle Scholar
  10. 10.
    Stéphan O., Bando Y., Loiseau A., Willaime F., Shramchenko N., Tamiya T., Sato T.: Formation of small single-layer and nested BN cages under electron irradiation of nanotubes and bulk material. Appl. Phys. A Mater. Sci. Process. 67, 107–111 (1998)CrossRefGoogle Scholar
  11. 11.
    Stephenson A., Ward M.D.: An octanuclear coordination cage with a ‘cuneane’ core—a topological isomer of a cubic cage. Dalton Trans. 40, 7824–7826 (2011)CrossRefGoogle Scholar
  12. 12.
    Iijima S.: Helical microtubules of carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  13. 13.
    Ugarte D.: Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992)CrossRefGoogle Scholar
  14. 14.
    Smith B.W., Monthioux M., Luzzi D.E.: Encapsulated C 60 in carbon nanotubes. Nature 396, 323–324 (1998)CrossRefGoogle Scholar
  15. 15.
    Liu J., Dai H., Hafner J.H., Colbert D.T., Smalley R.E.: Fullerene ‘crop circles’. Nature 385, 780–781 (1997)CrossRefGoogle Scholar
  16. 16.
    Krishnan A., Dujardin E., Treacy M.M.J., Hugdahl J., Lynum S., Ebbesen T.W.: Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451–454 (1997)CrossRefGoogle Scholar
  17. 17.
    Iijima S., Yudasaka M., Yamada R., Bandow S., Suenaga K., Kokai F., Takahashi K.: Nano-aggregates of single-walled graphitic carbon nanohorns. Chem. Phys. Lett. 309, 165–170 (1999)CrossRefGoogle Scholar
  18. 18.
    Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Electric field effects in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  19. 19.
    Rassat A.: Chirality and symmetry aspects of spheroarenes, including fullerenes. Chirality 13, 395–402 (2001)CrossRefGoogle Scholar
  20. 20.
    Fowler P.W., Heine T., Manolopoulos D.E., Mitchell D., Orlandi G., Schmidt R., Seifert G., Zerbetto F.: Energetics of fullerenes with four-membered rings. J. Phys. Chem. 100, 6984–6991 (1996)CrossRefGoogle Scholar
  21. 21.
    Ayuela A., Fowler P.W., Mitchell D., Schmidt R., Seifert G., Zerbetto F.: C62: theoretical evidence for a non-classical fullerene with a heptagonal ring. J. Phys. Chem. 100, 15634–15636 (1996)CrossRefGoogle Scholar
  22. 22.
    Fowler P.W., Mitchell D., Seifert G., Zerbetto F.: Energetics of fullerenes with octagonal rings. Fullerene Sci. Tech. 5, 747–768 (1997)CrossRefGoogle Scholar
  23. 23.
    Dress A., Brinkmann G.: Phantasmagorical fulleroids. MATCH Commun. Math. Comput. Chem. 33, 87–100 (1996)Google Scholar
  24. 24.
    Kardoš F.: Tetrahedral fulleroids. J. Math. Chem. 41, 101–111 (2006)CrossRefGoogle Scholar
  25. 25.
    Manolopoulos D.E., May J.C., Down S.E.: Theoretical studies of the fullerenes C 34 to C 70. Chem. Phys. Lett. 181, 105–111 (1991)CrossRefGoogle Scholar
  26. 26.
    Brinkmann G., Dress A.W.M.: A constructive enumeration of fullerenes. J. Algorithms 23, 345–358 (1997)CrossRefGoogle Scholar
  27. 27.
    Brinkmann G., Dress A.W.M.: PentHex puzzles—a reliable and efficient top-down approach to fullerene-structure enumeration. Adv. Appl. Math. 21, 473–480 (1998)CrossRefGoogle Scholar
  28. 28.
    Godly E.W., Taylor R.: Nomenclature and terminology of fullerenes: a preliminary survey. Fullerene Sci. Technol. 5, 1667–1708 (1997)CrossRefGoogle Scholar
  29. 29.
    Wudl F., Smalley R.E., Smith A.B., Taylor R., Wasserman E., Godly E.W.: Nomenclature and terminology of fullerenes: a preliminary survey. Pure Appl. Chem. 69, 1412–1434 (1997)Google Scholar
  30. 30.
    Manolopoulos D.E., Fowler P.W.: A fullerene without a spiral. Chem. Phys. Lett. 204, 1–7 (1993)CrossRefGoogle Scholar
  31. 31.
    Grünbaum B., Motzkin T.S.: The number of hexagons and the simplicity of geodesics on certain polyhedra. Can. J. Math. 15, 744–751 (1963)CrossRefGoogle Scholar
  32. 32.
    Yoshida M., Fowler P.W.: Dihedral fullerenes of threefold symmetry with and without face spirals. J. Chem. Soc. Faraday Trans. 93, 3289–3294 (1997)CrossRefGoogle Scholar
  33. 33.
    Yoshida M., Fowler P.W.: Systematic relationships between fullerenes without spirals. Chem. Phys. Lett. 278, 256–261 (1997)CrossRefGoogle Scholar
  34. 34.
    Fowler P.W., Cremona J.E.: Fullerenes containing fused triples of pentagonal rings. J. Chem. Soc. Faraday 93, 2255–2262 (1997)CrossRefGoogle Scholar
  35. 35.
    Brinkmann G., Fowler P.W., Yoshida M.: New non-spiral fullerenes from old: generalised truncations of isolated-pentagon-triple carbon cages. MATCH Commun. Math. Comput. Chem. 38, 7–17 (1998)Google Scholar
  36. 36.
    Brinkmann G., Goedgebeur J., McKay B.D.: The smallest fullerene without a spiral. Chem. Phys. Lett. 522, 54–55 (2012)CrossRefGoogle Scholar
  37. 37.
    Brinkmann G.: Problems and scope of spiral algorithms and spiral codes for polyhedral cages. Chem. Phys. Lett. 272, 193–198 (1997)CrossRefGoogle Scholar
  38. 38.
    Brinkmann G., Fowler P.W.: Spiral coding of leapfrog polyhedra. J. Chem. Inf. Comput. Sci. 38, 463–468 (1998)CrossRefGoogle Scholar
  39. 39.
    Grünbaum B.: Convex Polytopes. Interscience, New York (1967)Google Scholar
  40. 40.
    Eberhard V.: Zur Morphologie der Polyeder. Teubner, Leipzig (1891)Google Scholar
  41. 41.
    Deza M., Dutour-Sikirić M., Fowler P.W.: The symmetries of cubic polyhedral graphs with largest face size 6. MATCH Commun. Math. Comput. Chem. 61, 589–602 (2009)Google Scholar
  42. 42.
    T. Harmuth, The construction of cubic maps on orientable surfaces, PhD thesis, University of Bielefeld (2000)Google Scholar
  43. 43.
    Brinkmann G., Heidemeier O., Harmuth T.: The construction of cubic and quartic planar maps with prescribed face degrees. Discr. Appl. Math. 128, 541–554 (2003)CrossRefGoogle Scholar
  44. 44.
    Brinkmann G., Delgado-Friedrichs O., Lisken S., Peeters A., Van Cleemput N.: CaGe—a virtual environment for studying some special classes of plane graphs—an update. MATCH Commun. Math. Comput. Chem. 63, 533–552 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Patrick W. Fowler
    • 1
  • Mohammadreza Jooyandeh
    • 2
  • Gunnar Brinkmann
    • 3
  1. 1.Department of ChemistryUniversity of SheffieldSheffieldUK
  2. 2.Research School of Computer ScienceAustralian National UniversityCanberraAustralia
  3. 3.Applied Mathematics and Computer ScienceGhent UniversityGhentBelgium

Personalised recommendations