Advertisement

Journal of Mathematical Chemistry

, Volume 50, Issue 8, pp 2202–2222 | Cite as

Importance of the proligand-promolecule model in stereochemistry. I. The unit-subduced-cycle-index (USCI) approach to geometric features of prismane derivatives

  • Shinsaku FujitaEmail author
Original Paper

Abstract

Among the four methods of the unit-subduced-cycle-index (USCI) approach (Fujita in Symmetry and Combinatorial Enumeration in Chemistry. Springer, Berlin, Heidelberg, 1991), the fixed-point-matrix (FPM) method and the partial-cycle-index (PCI) method have been applied to the combinatorial enumeration of prismane derivatives. These enumeration processes are based on the proligand-promolecule model, which enables us to take account of achiral and chiral proligands. Prochirality in a geometric meaning has been discussed in general by emphasizing the presence of enantiospheric orbits in enumerated prismane derivatives. An enantiospheric orbit accommodating chiral proligands (along with achiral ones) has been shown to exhibit prochirality by using various prismane derivatives as examples. On the other hand, the scope of pseudoasymmetry has been extended to cover such a rigid skeleton as prismane in addition to a usual pseudoasymmetric center as a single atom, where the proligand-promolecule model plays an essential role.

Keywords

Prismane Enumeration Stereochemistry Proligand Promolecule Prochiral Pseudoasymmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van’t Hoff J.H.: La Chimie Dans L’Espace. P. M. Bazendijk, Rotterdam (1875)Google Scholar
  2. 2.
    van’t Hoff J.H.: Die Lagerung der Atome im Raume, (German Translation by F. Herrmann). Friedrich Vieweg und Sohn, Braunschweig (1877)Google Scholar
  3. 3.
    Le Bel J.A.: Bull. Soc. Chim. Fr. (2) 22, 337–347 (1874)Google Scholar
  4. 4.
    Fischer E.: Aus meinem Leben. Springer, Berlin (1922)Google Scholar
  5. 5.
    Fischer E.: Ber. Dtsch. Chem. Ges. 24, 1836–1845 (1891)CrossRefGoogle Scholar
  6. 6.
    Fischer E.: Ber. Dtsch. Chem. Ges. 24, 2683–2687 (1891)CrossRefGoogle Scholar
  7. 7.
    Cahn R.S., Ingold C.K., Prelog V.: Angew. Chem. Int. Ed. Eng. 5, 385–415 (1966)CrossRefGoogle Scholar
  8. 8.
    Prelog V., Helmchen G.: Angew. Chem. Int. Ed. Eng. 21, 567–583 (1982)CrossRefGoogle Scholar
  9. 9.
    Prelog V., Helmchen G.: Helv. Chim. Acta 55, 2581–2598 (1972)CrossRefGoogle Scholar
  10. 10.
    Prelog V.: Science 193, 17–24 (1976)CrossRefGoogle Scholar
  11. 11.
    Hanson K.R.: J. Am. Chem. Soc. 88, 2731–2742 (1966)CrossRefGoogle Scholar
  12. 12.
    Mislow K., Siegel J.: J. Am. Chem. Soc. 106, 3319–3328 (1984)CrossRefGoogle Scholar
  13. 13.
    IUPAC Organic Chemistry Division, Pure Appl. Chem. 68, 2193–2222 (1996)Google Scholar
  14. 14.
    Pólya G.: Acta Math. 68, 145–254 (1937)CrossRefGoogle Scholar
  15. 15.
    Pólya G., Read R.C.: Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds . Springer, New York, NY (1987)CrossRefGoogle Scholar
  16. 16.
    Fujita S.: Croat. Chem. Acta 79, 411–427 (2006)Google Scholar
  17. 17.
    Robinson R.W., Harary F., Balaban A.T.: Tetrahedron 32, 355–361 (1976)CrossRefGoogle Scholar
  18. 18.
    Fujita S.: Theor. Chim. Acta 76, 247–268 (1989)CrossRefGoogle Scholar
  19. 19.
    Fujita S.: J. Math. Chem. 5, 99–120 (1990)CrossRefGoogle Scholar
  20. 20.
    Fujita S.: J. Am. Chem. Soc. 112, 3390–3397 (1990)CrossRefGoogle Scholar
  21. 21.
    Fujita S.: Bull. Chem. Soc. Jpn. 74, 1585–1603 (2001)CrossRefGoogle Scholar
  22. 22.
    Fujita S.: Chem. Rec. 2, 164–176 (2002)CrossRefGoogle Scholar
  23. 23.
    Fujita S.: Bull. Chem. Soc. Jpn. 75, 1863–1883 (2002)CrossRefGoogle Scholar
  24. 24.
    Fujita S.: Bull. Chem. Soc. Jpn. 63, 203–215 (1990)CrossRefGoogle Scholar
  25. 25.
    Fujita S.: Bull. Chem. Soc. Jpn. 63, 315–327 (1990)CrossRefGoogle Scholar
  26. 26.
    Fujita S.: Symmetry and Combinatorial Enumeration in Chemistry. Springer, Berlin, Heidelberg (1991)CrossRefGoogle Scholar
  27. 27.
    Fujita S.: Tetrahedron 47, 31–46 (1991)CrossRefGoogle Scholar
  28. 28.
    Fujita S.: J. Chem. Inf. Comput. Sci. 32, 354–363 (1992)CrossRefGoogle Scholar
  29. 29.
    Fujita S.: Polyhedron 12, 95–110 (1993)CrossRefGoogle Scholar
  30. 30.
    Fujita S.: J. Chem. Educ. 63, 744–746 (1986)Google Scholar
  31. 31.
    Fujita S.: J. Chem. Inf. Comput. Sci. 40, 426–437 (2000)CrossRefGoogle Scholar
  32. 32.
    Fujita S.: Bull. Chem. Soc. Jpn. 73, 2679–2685 (2000)CrossRefGoogle Scholar
  33. 33.
    Fujita S.: J. Chem. Inf. Comput. Sci. 31, 540–546 (1991)CrossRefGoogle Scholar
  34. 34.
    Fujita S.: Bull. Chem. Soc. Jpn. 75, 1949–1962 (2002)CrossRefGoogle Scholar
  35. 35.
    Fujita S.: Bull. Chem. Soc. Jpn. 63, 1876–1883 (1990)CrossRefGoogle Scholar
  36. 36.
    Fujita S.: J. Chem. Inf. Comput. Sci. 39, 151–163 (1999)CrossRefGoogle Scholar
  37. 37.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 46, 25–44 (2002)Google Scholar
  38. 38.
    Fujita S.: Helv. Chim. Acta 85, 2440–2457 (2002)CrossRefGoogle Scholar
  39. 39.
    Fujita S.: Bull. Chem. Soc. Jpn. 63, 2759–2769 (1990)CrossRefGoogle Scholar
  40. 40.
    Fujita S.: Tetrahedron 46, 5943–5954 (1990)CrossRefGoogle Scholar
  41. 41.
    Fujita S.: Bull. Chem. Soc. Jpn. 64, 439–449 (1991)CrossRefGoogle Scholar
  42. 42.
    Fujita S.: Bull. Chem. Soc. Jpn. 64, 3215–3223 (1991)CrossRefGoogle Scholar
  43. 43.
    Fujita S.: Bull. Chem. Soc. Jpn. 84, 1192–1207 (2011)CrossRefGoogle Scholar
  44. 44.
    Fujita S.: Theor. Chem. Acc. 113, 73–79 (2005)CrossRefGoogle Scholar
  45. 45.
    Fujita S.: Theor. Chem. Acc. 113, 80–86 (2005)CrossRefGoogle Scholar
  46. 46.
    Fujita S.: Theor. Chem. Acc. 115, 37–53 (2006)CrossRefGoogle Scholar
  47. 47.
    Fujita S.: Theor. Chem. Acc. 117, 353–370 (2007)CrossRefGoogle Scholar
  48. 48.
    Fujita S.: Theor. Chem. Acc. 117, 339–351 (2007)CrossRefGoogle Scholar
  49. 49.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 67, 5–24 (2012)Google Scholar
  50. 50.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 67, 25–54 (2012)Google Scholar
  51. 51.
    Fujita S.: Diagrammatical Approach to Molecular Symmetry and Enumeration of Stereoisomers. University of Kragujevac, Faculty of Science, Kragujevac (2007)Google Scholar
  52. 52.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 57, 5–48 (2007)Google Scholar
  53. 53.
    Fujita S.: J. Org. Chem. 67, 6055–6063 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Shonan Institute of Chemoinformatics and Mathematical ChemistryKanagawa-KenJapan

Personalised recommendations