Advertisement

Journal of Mathematical Chemistry

, Volume 50, Issue 8, pp 2168–2201 | Cite as

Importance of the proligand-promolecule model in stereochemistry. II. The stereoisogram approach to stereoisomeric features of prismane derivatives

  • Shinsaku FujitaEmail author
Original Paper

Abstract

The stereoisogram approach (Fujita in J Org Chem 69:3158–3165, 2004; and in Tetrahedron 60:11629–11638, 2004) has been applied to comprehensive discussions on geometric aspects and stereoisomeric aspects of stereochemistry, where a prismane skeleton has been selected as a rigid skeleton for the underlying proligand-promolecule model. The existence of five types of stereoisograms (Types I–V) has been demonstrated by using prismane derivatives as illustrative examples in a consistent way with a general proof using the group theory (Fujita in MATCH Commun Math Comput Chem 54:39–52, 2005). After a C/A-convention for characterizing absolute configurations was proposed on the basis of the stereoisogram approach, such geometric and stereoisomeric aspects of stereochemistry as chirality, RS-stereogenicity, and sclerality have been discussed by putting emphasis on the independence between chirality and RS-stereogenicity, on extended features of pseudoasymmetry, and on the assignability of A/C-descriptors. By following a general rationalization (Fujita in Tetrahedron 62:691–705, 2006), prochirality, pro-RS-stereogenicity, and prosclerality have been discussed on the basis of such attributive terms as sphericities, RS-tropicities, and cercalities, where illustrative examples are selected from prismane derivatives. Thereby, the stereoisogram approach has been clarified to be a versatile device for integrating geometric and stereoisomeric aspects of stereochemistry.

Keywords

Prismane Stereoisogram Stereochemistry Proligand Promolecule Prochirality Pseudoasymmetry C/A-descriptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Connelly N.G., Damhus T., Hartshorn R.M., Hutton A.T.: Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005. The Royal Society of Chemistry, Cambridge (2005)Google Scholar
  2. 2.
    Eliel E.L., Wilen S.H.: Stereochemistry of Organic Compounds. Wiley, New York (1994)Google Scholar
  3. 3.
    Fischer E.: Aus Meinem Leben. Springer, Berlin (1922)Google Scholar
  4. 4.
    Fischer E.: Ber. Dtsch. Chem. Ges. 24, 1836–1845 (1891)CrossRefGoogle Scholar
  5. 5.
    Fischer E.: Ber. Dtsch. Chem. Ges. 24, 2683–2687 (1891)CrossRefGoogle Scholar
  6. 6.
    S. Fujita, Prochirality and Pro-RS-Stereogenicity. Stereoisogram Approach Free from the Conventional “Prochirality” and “Prostereogenicity”, in Carbon Bonding and Structures. Advances in Physics and Chemistry, ed. by M.V. Putz, Vol. 5 of Carbon Materials: Chemistry and Physics, Chapter 10. (Springer, Dordrecht, 2011), pp. 227–271Google Scholar
  7. 7.
    Fujita S.: Tetrahedron 47, 31–46 (1991)CrossRefGoogle Scholar
  8. 8.
    Fujita S.: J. Chem. Inf. Comput. Sci. 32, 354–363 (1992)CrossRefGoogle Scholar
  9. 9.
    Fujita S.: Polyhedron 12, 95–110 (1993)CrossRefGoogle Scholar
  10. 10.
    Fujita S.: J. Org. Chem. 69, 3158–3165 (2004)CrossRefGoogle Scholar
  11. 11.
    Fujita S.: J. Math. Chem. 35, 265–287 (2004)CrossRefGoogle Scholar
  12. 12.
    Fujita S.: Tetrahedron 60, 11629–11638 (2004)CrossRefGoogle Scholar
  13. 13.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 52, 3–18 (2004)Google Scholar
  14. 14.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 52, 3–18 (2004)Google Scholar
  15. 15.
    Fujita S.: Memoirs of the faculty of engineering and design. Kyoto Inst Technol 53, 19–38 (2005)Google Scholar
  16. 16.
    Fujita S.: J. Chem. Inf. Comput. Sci. 44, 1719–1726 (2004)CrossRefGoogle Scholar
  17. 17.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 53, 147–159 (2005)Google Scholar
  18. 18.
    Fujita S.: J. Math. Chem. 47, 145–166 (2010)CrossRefGoogle Scholar
  19. 19.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 54, 39–52 (2005)Google Scholar
  20. 20.
    Fujita S.: Tetrahedron 62, 691–705 (2006)CrossRefGoogle Scholar
  21. 21.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 61, 39–70 (2009)Google Scholar
  22. 22.
    Fujita S.: J. Comput. Aided Chem. 10, 76–95 (2009)CrossRefGoogle Scholar
  23. 23.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 61, 11–38 (2009)Google Scholar
  24. 24.
    Fujita S.: J. Comput. Aided Chem. 10, 16–29 (2009)CrossRefGoogle Scholar
  25. 25.
    Fujita S.: Tetrahedron 65, 1581–1592 (2009)CrossRefGoogle Scholar
  26. 26.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 63, 3–24 (2010)Google Scholar
  27. 27.
    Fujita S.: MATCH Commun. Math. Comput. Chem. 63, 25–66 (2010)Google Scholar
  28. 28.
    Fujita S.: J. Math. Chem. 49, 95–162 (2011)CrossRefGoogle Scholar
  29. 29.
    Fujita S.: Symmetry and Combinatorial Enumeration in Chemistry. Springer, Berlin (1991)CrossRefGoogle Scholar
  30. 30.
    Fujita S.: Helv. Chim. Acta 85, 2440–2457 (2002)CrossRefGoogle Scholar
  31. 31.
    Fujita S.: J. Math. Chem. 32, 1–17 (2002)CrossRefGoogle Scholar
  32. 32.
    Fujita S.: Chem. Rec. 2, 164–176 (2002)CrossRefGoogle Scholar
  33. 33.
    Fujita S.: Bull. Chem. Soc. Jpn. 75, 1863–1883 (2002)CrossRefGoogle Scholar
  34. 34.
    Fujita S.: Bull. Chem. Soc. Jpn. 63, 315–327 (1990)CrossRefGoogle Scholar
  35. 35.
    Fujita S.: Bull. Chem. Soc. Jpn. 63, 1876–1883 (1990)CrossRefGoogle Scholar
  36. 36.
    Fujita S.: J. Math. Chem. 33, 113–143 (2003)CrossRefGoogle Scholar
  37. 37.
    IUPAC Commission on Nomenclature of Organic Chemistry: Pure Appl. Chem. 71, 513–529 (1999)CrossRefGoogle Scholar
  38. 38.
    Fujita S.: J. Am. Chem. Soc. 112, 3390–3397 (1990)CrossRefGoogle Scholar
  39. 39.
    Fujita S.: J. Org. Chem. 67, 6055–6063 (2002)CrossRefGoogle Scholar
  40. 40.
    Hanson K.R.: J. Am. Chem. Soc. 88, 2731–2742 (1966)CrossRefGoogle Scholar
  41. 41.
    IUPAC Organic Chemistry Division: Pure Appl. Chem. 68, 2193–2222 (1996)CrossRefGoogle Scholar
  42. 42.
    Le Bel J.A.: Bull. Soc. Chim. Fr. (2) 22, 337–347 (1874)Google Scholar
  43. 43.
    van’t Hoff J.H.: La Chimie Dans L’Espace. P. M. Bazendijk, Rotterdam (1875)Google Scholar
  44. 44.
    van’t Hoff J.H.: Die Lagerung der Atome im Raume, (German Translation by F. Herrmann). Friedrich Vieweg und Sohn, Braunschweig (1877)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Shonan Institute of Chemoinformatics and Mathematical ChemistryAshigara-Kami-GunJapan

Personalised recommendations