Journal of Mathematical Chemistry

, Volume 50, Issue 1, pp 274–288 | Cite as

A linear programming approach to weak reversibility and linear conjugacy of chemical reaction networks

  • Matthew D. Johnston
  • David Siegel
  • Gábor Szederkényi
Original Paper

Abstract

A numerically effective procedure for determining weakly reversible chemical reaction networks that are linearly conjugate to a known reaction network is proposed in this paper. The method is based on translating the structural and algebraic characteristics of weak reversibility to logical statements and solving the obtained set of linear (in)equalities in the framework of mixed integer linear programming. The unknowns in the problem are the reaction rate coefficients and the parameters of the linear conjugacy transformation. The efficacy of the approach is shown through numerical examples.

Keywords

Chemical kinetics Stability theory Weak reversibility Linear programming Dynamical equivalence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson D.: Global asymptotic stability for a class of nonlinear chemical equations. SIAM J. Appl. Math. 68(5), 1464–1476 (2008)CrossRefGoogle Scholar
  2. 2.
    Anderson D., Shiu A.: The dynamics of weakly reversible population processes near facets. SIAM J. Appl. Math. 70(6), 1840–1858 (2010)CrossRefGoogle Scholar
  3. 3.
    Angeli D., Leenheer P., Sontag E.: A petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210(2), 598–618 (2007)CrossRefGoogle Scholar
  4. 4.
    Banaji M.: Monotonicity in chemical reaction systems. Dyn. Syst. 24(1), 1–30 (2009)CrossRefGoogle Scholar
  5. 5.
    Banaji M., Angeli D.: Convergence in strongly monotone systems with an increasing first integral. SIAM J. Math. Anal. 42(1), 334–353 (2010)CrossRefGoogle Scholar
  6. 6.
    Bang-Jensen J., Gutin G.: Digraphs: Theory, Algorithms and Applications. Springer, Berlin (2001)Google Scholar
  7. 7.
    Craciun G., Dickenstein A., Shiu A., Sturmfels B.: Toric dynamical systems. J. Symbolic Comput. 44(11), 1551–1565 (2009)CrossRefGoogle Scholar
  8. 8.
    Craciun G., Feinberg M.: Multiple equilibria in complex chemical reaction networks: I. the injectivity property. SIAM J. Appl. Math. 65(5), 1526–1546 (2005)CrossRefGoogle Scholar
  9. 9.
    Craciun G., Feinberg M.: Multiple equilibria in complex chemical reaction networks: II. the species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338 (2006)CrossRefGoogle Scholar
  10. 10.
    Craciun G., Feinberg M., Tang Y.: Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci. USA 103(23), 8697–8702 (2006)CrossRefGoogle Scholar
  11. 11.
    Craciun G., Pantea C.: Identifiability of chemical reaction networks. J. Math. Chem. 44(1), 244–259 (2008)CrossRefGoogle Scholar
  12. 12.
    Craciun, G., Pantea, C., Computational methods for analyzing bistability in biochemical reaction networks. IEEE International Symposium on Circuits and Systems (ISCAS) (2010)Google Scholar
  13. 13.
    Craciun, G., Pantea, C., Nazarov, F.: Persistence and permanence of mass-action and power-law dynamical systems Available at arXiv:1010.3050Google Scholar
  14. 14.
    Feinberg, M.: Lectures on chemical reaction networks. URL http://www.che.eng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks/. Unpublished written versions of lectures given at the Mathematics Research Center, University of Wisconsin
  15. 15.
    Feinberg M.: Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49, 187–194 (1972)CrossRefGoogle Scholar
  16. 16.
    Gatermann K., Huber B.: A family of sparse polynomial systems arising in chemical reaction systems. J. Symbolic Comput. 33(3), 275–305 (2002)CrossRefGoogle Scholar
  17. 17.
    Hárs V., Tóth J.: On the inverse problem of reaction kinetics. Coll. Math. Soc. J. Bolyai 30, 363–379 (1981)Google Scholar
  18. 18.
    Horn F.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal. 49, 172–186 (1972)CrossRefGoogle Scholar
  19. 19.
    Horn F.: The dynamics of open reaction systems: Mathematical aspects of chemical and biochemical problems and quantum chemistry. SIAM-AMS Proc. 8, 125–137 (1974)Google Scholar
  20. 20.
    Horn F., Jackson R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 187–194 (1972)CrossRefGoogle Scholar
  21. 21.
    Johnston, M.D., Siegel, D., Linear conjugacy of chemical reaction networks. J. Math. Chem. (2011). doi:10.1007/s10910-011-9817-4. Available on the arXiv at arxiv:1101.1663
  22. 22.
    Krambeck F.J.: The mathematical structure of chemical kinetics in homogeneous single-phase systems. Arch. Rational Mech. Anal. 38, 317–347 (1970)CrossRefGoogle Scholar
  23. 23.
    Nuutila E., Soisalon-Soininen E.: On finding the strongly connected components in a directed graph. Inform. Process. Lett. 49, 9–14 (1994)CrossRefGoogle Scholar
  24. 24.
    Perko L.: Differential Equations and Dynamical Systems. Springer, Berlin (1993)Google Scholar
  25. 25.
    Raman R., Grossmann I.E.: Modelling and computational techniques for logic based integer programming. Comput. Chem. Eng. 18, 563–578 (1994)CrossRefGoogle Scholar
  26. 26.
    Schlosser P., Feinberg M.: A theory of multiple steady states in isothermal homogeneous cfstrs with many reactions. Chem. Eng. Sci. 49(11), 1749–1767 (1994)CrossRefGoogle Scholar
  27. 27.
    Siegel, D., Johnston, M.D., A stratum approach to global stability of complex balanced systems. Dyn. Syst. 26(2), 125–146 (2011). Available on the arXiv at arxiv:1008.1622Google Scholar
  28. 28.
    Sontag E.: Structure and stability of certain chemical networks and applications to the kinetic proofreading model of t-cell receptor signal transduction. IEEE Trans. Automat. Control 46(7), 1028–1047 (2001)CrossRefGoogle Scholar
  29. 29.
    Szederkényi G.: Comment on “identifiability of chemical reaction networks” by G. Craciun and C. Pantea. J. Math. Chem. 45, 1172–1174 (2009)CrossRefGoogle Scholar
  30. 30.
    Szederkényi G.: Computing sparse and dense realizations of reaction kinetic systems. J. Math. Chem. 47, 551–568 (2010)CrossRefGoogle Scholar
  31. 31.
    Szederkényi, G., Hangos, K., Finding complex balanced and detailed balanced realizations of chemical reaction networks. J. Math. Chem. 49, 1163–1179 (2011). Available on the arXiv at arxiv:1010.4477Google Scholar
  32. 32.
    Szederkényi, G., Hangos, K., Péni, T., Maximal and minimal realizations of chemical kinetics systems: computation and properties. MATCH Commun. Math. Comput. Chem. 65, 309–332 (2011). Available on the arXiv at arxiv:1005.2913Google Scholar
  33. 33.
    Szederkényi, G., Hangos, K., Tuza, Z., Finding weakly reversible realizations of chemical reaction networks using optimization. MATCH Commun. Math. Comput. Chem. 67, 193–212 (2012). Available on the arXiv at arxiv:1103.4741Google Scholar
  34. 34.
    Wiggins S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, Berlin (1990)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Matthew D. Johnston
    • 1
  • David Siegel
    • 1
  • Gábor Szederkényi
    • 2
    • 3
  1. 1.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada
  2. 2.(Bio)Process Engineering GroupIIM-CSIC, Spanish National Research CouncilVigoSpain
  3. 3.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations