Journal of Mathematical Chemistry

, Volume 50, Issue 1, pp 220–232 | Cite as

On the chemical synthesis of new topological structures

  • Nils A. Baas
  • Nadrian C. Seeman
Original Paper


The construction of chemical species with topological properties is an area of increasing interest. Numerous such structures have been synthesized in recent years, particularly from DNA, which is a natural synthon for these molecules. Recently, higher-order topological structures have been introduced. These hyper-structures consist of combinations of simple structures, such as a Brunnian Link of Brunnian Links or a Hopf Ring of Hopf Rings, or combinations thereof. In this article, we discuss the possibilities of constructing these hyper-structures with real molecules, particularly emphasizing the tools that result from the double helical structure of DNA.


Chemical topology Higher-order topology Brunnian links Hopf links DNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baas N.A.: Hyperstructures as abstract matter. Adv. Complex Syst. 9(3), 157–182 (2006)CrossRefGoogle Scholar
  2. 2.
    Baas N.A.: New structures in complex systems. Eur. Phys. J. Special Top. 178, 25–44 (2009)CrossRefGoogle Scholar
  3. 3.
    N.A. Baas, New states of matter suggested by new topological structures. arXiv:1012.2698v2 [cond-mat. quant-gas] 16 Feb 2011, p. 41Google Scholar
  4. 4.
    Ciengshin T., Sha R., Seeman N.C.: Automatic molecular weaving prototyped using single-stranded DNA. Angew. Chem. Int. Ed. 50, 4419–4422 (2011)CrossRefGoogle Scholar
  5. 5.
    Dietrich-Buchecker C., Colasson B.X., Sauvage J.-P.: Top. Curr. Chem. 249, 261 (2005)Google Scholar
  6. 6.
    Du S.M., Seeman N.C.: The synthesis of a DNA knot containing both positive and negative nodes. J. Am. Chem. Soc. 114, 9652–9655 (1992)CrossRefGoogle Scholar
  7. 7.
    Du S.M., Seeman N.C.: The construction of a trefoil knot from a DNA branched junction motif. Biopolymers 34, 31–37 (1994)CrossRefGoogle Scholar
  8. 8.
    Du S.M., Stollar B.D., Seeman N.C.: A synthetic DNA molecule in three knotted topologies. J. Am. Chem. Soc. 117, 1194–1200 (1995)CrossRefGoogle Scholar
  9. 9.
    S. Dugowson, The connectivity order of links (2008) [arXiv:0804.4323v1] [math.GN]Google Scholar
  10. 10.
    Fu T.-J., Tse-Dinh Y.-C., Seeman N.C.: Holliday junction crossover topology. J. Mol. Biol. 236, 91–105 (1994)CrossRefGoogle Scholar
  11. 11.
    Liang C., Mislow K.: On Borromean links. J. Math. Chem. 16, 27–35 (1994)CrossRefGoogle Scholar
  12. 12.
    Mao C., Sun W., Seeman N.C.: Assembly of Borromean rings from DNA. Nature 386, 137–138 (1997)CrossRefGoogle Scholar
  13. 13.
    Rich A., Nordheim A., Wang A.H.J.: The chemistry and biology of left-handed Z-DNA. Ann. Rev. Biochem. 53, 791–846 (1984)CrossRefGoogle Scholar
  14. 14.
    Seeman N.C.: The design of single-stranded nucleic acid knots. Molec. Eng. 2, 297–307 (1992)CrossRefGoogle Scholar
  15. 15.
    N. Seeman, Synthetic single-stranded DNA topology, in Proceedings of Symposia in Applied Math. vol 66 (American Mathematical Society, 2009)Google Scholar
  16. 16.
    Stoddart J.F.: Chem. Soc. Rev. 38, 1802 (2009)CrossRefGoogle Scholar
  17. 17.
    Yurke B., Turberfield A.J., Mills A.P. Jr, Simmel F.C., Newmann J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNTNUTrondheimNorway
  2. 2.Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations