Advertisement

Reachability, persistence, and constructive chemical reaction networks (part I): reachability approach to the persistence of chemical reaction networks

  • Gilles Gnacadja
Original Paper

Abstract

For a chemical reaction network, persistence is the property that no species tend to extinction if all species are initially present. We investigate the stronger property of vacuous persistence: the same asymptotic feature with a weaker requirement on initial states, namely that all species be implicitly present. By implicitly present, we mean for instance that if only water is present and the reaction network incorporates the information that water is made of hydrogen and oxygen, then hydrogen and oxygen are implicitly present. Persistence is inherently interesting and has implications for the global asymptotic stability of equilibrium states. Our main tools are the work of A. I. Vol’pert on the nullity and positivity of species concentrations, and the enabling notion of reachability. The main result states that a reaction network is vacuously persistent if and only if the set of all species is the only set of species that both is closed with respect to reachability and causes the implicit presence of all species. This paper is the first in a series of three articles. Two sequel papers introduce additional formalisms and use them to describe two large classes of reaction networks that are used as models in biochemistry and are vacuously persistent.

Keywords

Chemical reaction network Vacuous persistence Reachability A. I. Vol’pert 

Mathematics Subject Classification (2010)

92C42 92C45 34D05 

References

  1. 1.
    Anderson D.F.: Global asymptotic stability for a class of nonlinear chemical equations. SIAM J. Appl. Math. 68(5), 1464–1476 (2008). doi: 10.1137/070698282 CrossRefGoogle Scholar
  2. 2.
    Anderson D.F., Shiu A.: The dynamics of weakly reversible population processes near facets. SIAM J. Appl. Math. 70(6), 1840–1858 (2010). doi: 10.1137/090764098 CrossRefGoogle Scholar
  3. 3.
    D. Angeli, P. De Leenheer, E.D. Sontag, A Petri net approach to persistence analysis in chemical reaction networks, in Biology and Control Theory: Current Challenges ed. by I. Queinnec, S. Tarbouriech, G. Garcia, S.-I. Niculescu. Lecture Notes in Control and Information Sciences, vol. 357 (Springer, Berlin, 2007), pp. 181–216. doi: 10.1007/978-3-540-71988-5
  4. 4.
    Angeli D., De Leenheer P., Sontag E.D.: A Petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210(2), 598–618 (2007). doi: 10.1016/j.mbs.2007.07.003 CrossRefGoogle Scholar
  5. 5.
    M. Feinberg, Lectures on Chemical Reaction Networks (1980), http://www.che.eng.ohio-state.edu/~Feinberg/LecturesOnReactionNetworks/.
  6. 6.
    Feinberg M.: Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987). doi: 10.1016/0009-2509(87)80099-4 CrossRefGoogle Scholar
  7. 7.
    G. Gnacadja, Reachability, persistence, and constructive chemical reaction networks (part II): a formalism for species composition in chemical reaction network theory and application to persistence. J. Math. Chem. (2011). doi: 10.1007/s10910-011-9896-2
  8. 8.
    G. Gnacadja, Reachability, persistence, and constructive chemical reaction networks (part III): a mathematical formalism for binary enzymatic networks and application to persistence. J. Math. Chem. (2011). doi: 10.1007/s10910-011-9895-3
  9. 9.
    J. Gunawardena, Chemical Reaction Network Theory for In-Silico Biologists (2003), http://www.jeremy-gunawardena.com/papers/crnt.pdf.
  10. 10.
    Horn F., Jackson R.: General mass action kinetics. Arch. Rat. Mech. Anal. 47(2), 81–116 (1972). doi: 10.1007/BF00251225 CrossRefGoogle Scholar
  11. 11.
    Murata T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989). doi: 10.1109/5.24143 CrossRefGoogle Scholar
  12. 12.
    Peter S., Dittrich P.: On the relation between organizations and limit sets in chemical reaction systems. Adv. Complex Syst. 14(1), 77–96 (2011)CrossRefGoogle Scholar
  13. 13.
    R.T. Rockafellar, Convex Analysis. Princeton Landmarks in Mathematics and Physics, (Princeton University Press, 1997), ISBN: 9780691015866Google Scholar
  14. 14.
    Shiu A., Sturmfels B.: Siphons in chemical reaction networks. Bull. Math. Biol. 72(6), 1448–1463 (2010). doi: 10.1007/s11538-010-9502-y CrossRefGoogle Scholar
  15. 15.
    Siegel D., Chen Y.F.: Global stability of deficiency zero chemical networks. Can. Appl. Math. Q. 2(3), 413–434 (1994)Google Scholar
  16. 16.
    Siegel D., MacLean D.: Global stability of complex balanced mechanisms. J. Math. Chem. 27, 89–110 (2000). doi: 10.1023/A:1019183206064 CrossRefGoogle Scholar
  17. 17.
    E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd ed., Textbooks in Applied Mathematics, vol. 6. (Springer, 1998) ISBN:0387984895Google Scholar
  18. 18.
    Sontag E.D.: Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction. IEEE Trans. Autom. Control 46(7), 1028–1047 (2001). doi: 10.1109/9.935056 CrossRefGoogle Scholar
  19. 19.
    E.D. Sontag, Private communication, January 2010Google Scholar
  20. 20.
    Vasil’ev V.M., Vol’pert A.I., Khudyaev S.I.: A method of quasi-stationary concentrations for the equations of chemical kinetics. USSR Comput. Math. Math. Phys. 13(3), 187–206 (1973). doi: 10.1016/0041-5553(73)90108-0 CrossRefGoogle Scholar
  21. 21.
    Vasil’ev V.M., Vol’pert A.I., Khudyaev S.I.: On the paper “The method of quasi-stationary concentrations for the equations of chemical kinetics”. USSR Comput. Math. Math. Phys. 14(1), 268 (1974). doi: 10.1016/0041-5553(74)90161-X CrossRefGoogle Scholar
  22. 22.
    Vol’pert A.I.: Differential equations on graphs. Math. USSR-Sbornik 17(4), 571–582 (1972). doi: 10.1070/SM1972v017n04ABEH001603 CrossRefGoogle Scholar
  23. 23.
    A.I. Vol’pert, S.I. Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Mechanics: Analysis, vol. 8. (Springer, 1985) ISBN:9789024731091.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Research and Development Information SystemsAmgen, Inc.Thousand OaksUSA

Personalised recommendations