Reconstructing biochemical cluster networks

  • Utz-Uwe Haus
  • Raymond Hemmecke
  • Sebastian Pokutta
Original Paper


Motivated by fundamental problems in chemistry and biology we study cluster graphs arising from a set of initial states \({S\subseteq\mathbb{Z}^n_+}\) and a set of transitions/reactions \({M\subseteq\mathbb{Z}^n_+\times\mathbb{Z}^n_+}\). The clusters are formed out of states that can be mutually transformed into each other by a sequence of reversible transitions. We provide a solution method from computational commutative algebra that allows for deciding whether two given states belong to the same cluster as well as for the reconstruction of the full cluster graph. Using the cluster graph approach we provide solutions to two fundamental questions: (1) Deciding whether two states are connected, e.g., if the initial state can be turned into the final state by a sequence of transition and (2) listing concisely all reactions processes that can accomplish that. As a computational example, we apply the framework to the permanganate/oxalic acid reaction.


Reaction mechanisms Computational chemistry Reactive intermediates Elementary reactions Reaction networks Chemical engineering Binomial ideals Gröbner bases Computer algebra 


  1. 1.
    Abel E.: Über den Verlauf der Reaktion zwischen Wasserstoffsuperoxyd und salpetriger Säure. Monatshefte für Chemie/Chemical Monthly 83(5), 1111–1115 (1952)CrossRefGoogle Scholar
  2. 2.
    Adler S.J., Noyes R.M.: The mechanism of the permanganate-oxalate reaction. J. Am. Chem. Soc. 77(8), 2036–2042 (1955)CrossRefGoogle Scholar
  3. 3.
    CoCoA Team. CoCoA: a system for doing computations in commutative algebra, Available at
  4. 4.
    Collart S., Kalkbrener M., Mall D.: Converting bases with the Gröbner walk. J. Symb. Comput. 24, 465–469 (2001)CrossRefGoogle Scholar
  5. 5.
    Cox D.A., Little J.B., O’Shea D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Berlin (2007)Google Scholar
  6. 6.
    Deiss E.: Fachgruppensitzungen von Donnerstag, den 27. bis Sonnabend, den 29. Mai. Zeitschrift für Angewandte Chemie. 39, 664–665 (1926)CrossRefGoogle Scholar
  7. 7.
    Faulon J.-L., Sault A.G.: Stochastic generator of chemical structure. 3. reaction network generation. J. Chem. Inf. Comput. Sci. 41(4), 894–908 (2001)CrossRefGoogle Scholar
  8. 8.
    Harcourt A.V., Esson W.: On the laws of connexion between the conditions of a chemical change and its amount. Philos. Trans. Royal Soc. Lond. 156, 193–221 (1866)CrossRefGoogle Scholar
  9. 9.
    Haus U.-U., Hemmecke R.: Unraveling the initial phase of the permanganate/oxalic acid reaction. J. Math. Chem. 48, 305–312 (2010)CrossRefGoogle Scholar
  10. 10.
    Hemmecke R., Malkin P.N.: Computing generating sets of lattice ideals and markov bases of lattices. J. Symb. Comput. 44, 1463–1476 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Hosten, B. Sturmfels, GRIN: An implementation of Gröbner bases for integer programming. In Integer Program. Comb. Optim. pp. 267–276Google Scholar
  12. 12.
    Kovács K., Vizvári B., Riedel M., Tóth J.: Decomposition of the permanganate/oxalic acid overall reaction to elementary steps based on integer programming theory. Phys. Chem. Chem. Phys. 6(6), 1236–1242 (2004)CrossRefGoogle Scholar
  13. 13.
    Kovacs K.A., Grof P., Burai L., Riedel M.: Revising the mechanism of the permanganate/oxalate reaction. J. Phys. Chem. A. 108(50), 11026–11031 (2004)CrossRefGoogle Scholar
  14. 14.
    Kreuzer M., Robbiano L.: Computational Commutative Algebra 1. Springer, Berlin (2000)CrossRefGoogle Scholar
  15. 15.
    Marwan W., Wagler A., Weismantel R.: A mathematical approach to solve the network reconstruction problem. Math. Methods Oper. Res. 67, 117–132 (2008)CrossRefGoogle Scholar
  16. 16.
    Mayr E.W., Meyer A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math. 46(3), 305–329 (1982)CrossRefGoogle Scholar
  17. 17.
    Pimienta V., Lavabre D., Levy G., Micheau J.C.: Reactivity of the Mn (III) and Mn (IV) intermediates in the permanganate/oxalic acid/sulfuric acid reaction: kinetic determination of the reducing species. J. Phys. Chem. 98(50), 13294–13299 (1994)CrossRefGoogle Scholar
  18. 18.
    Shiu A., Sturmfels B.: Siphons in chemical reaction networks. Bull. Math. Biol. 72, 1448–1463 (2010)CrossRefGoogle Scholar
  19. 19.
    Skrabal A.: Über die Primäroxydtheorie der Oxydationspozesse. Zeitschrift fur anorganische Chemie. 42(1), 60–86 (1904)CrossRefGoogle Scholar
  20. 20.
    Szalkai I.: A new general algorithmic method in reaction syntheses using linear algebra. J. Math. Chem. 28(1), 1–34 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Utz-Uwe Haus
    • 1
  • Raymond Hemmecke
    • 2
  • Sebastian Pokutta
    • 3
  1. 1.ETH ZurichZurichSwitzerland
  2. 2.Technische Universität MunichMunichGermany
  3. 3.University of Erlangen-NürnbergErlangenGermany

Personalised recommendations