Dynamics of benzene molecules situated in metal-organic frameworks

Original Paper


In this paper, we investigate the gyroscopic motion of a benzene molecule C6H6, which comprises an inner carbon ring and an outer hydrogen ring, and is suspended rigidly inside a metal-organic framework. The metal-organic framework provides a sterically unhindered environment and an electronic barrier for the benzene molecule. We model such gyroscopic motion from the inter-molecular interactions between the benzene ring and the metal-organic framework by both the Columbic force and the van der Waals force. We also capture additional molecular interactions, for example due to sterical compensations arising from the carboxylate ligands between the benzene molecule and the framework, by incorporating an extra empirical energy into the total molecular energy. To obtain a continuous approximation to the total energy of such a complicated atomic system, we assume that the atoms of the metal-organic framework can be smeared over the surface of a cylinder, while those for the benzene molecule are smeared over the contour line of the molecule. We then approximate the pairwise molecular energy between the molecules by performing line and surface integrals. We firstly investigate the freely suspended benzene molecule inside the framework and find that our theoretical results admit a two-fold flipping, with the possible maximum rotational frequency reaching the terahertz regime, and gigahertz frequencies at room temperature. We also show that the electrostatic interaction and the thermal energy dominate the gyroscopic motion of the benzene molecule, and we deduce that the extra energy term could possibly reduce the rotational frequency of the rigidly suspended benzene molecule from gigahertz to megahertz frequencies at room temperature, and even lower frequencies might be obtained when the strength of these interactions increases.


Benzene molecule Metal-organic frameworks Molecular gyroscope Molecular turnstile Sterically unhindered Coulombforce Lennard-Jones potential Continuous approximation Terahertz frequency 


  1. 1.
    Itoh H., Takahashi A., Adachi K., Noji H., Yasuda R., Yoshida M., Kinosita K.: Mechanically driven ATP synthesis by F-1-ATPase. Nature 427, 465–468 (2004)CrossRefGoogle Scholar
  2. 2.
    Boyer P.D.: Molecular motors—what makes ATP synthase spin?. Nature 402, 247 (1999)CrossRefGoogle Scholar
  3. 3.
    Yasuda R., Noji H., Kinosita K., Yoshida M.: F-1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degrees steps. Cell 93, 1117–1124 (1998)CrossRefGoogle Scholar
  4. 4.
    Schliwa M., Woehlke G.: Molecular motors. Nature 422, 759–765 (2003)CrossRefGoogle Scholar
  5. 5.
    Kottas G.S., Clarke L.I., Horinek D., Michl J.: Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2007)CrossRefGoogle Scholar
  6. 6.
    Vacek J., Michl J.: Artifical surface-mounted molecular rotors: Molecular dynamics simulations. Adv. Funct. Mater. 17, 730–739 (2007)CrossRefGoogle Scholar
  7. 7.
    Horinek D., Michl J.: Molecular dynamics simulation of an electric field driven dipolar molecular rotor attached to a quartz glass surace. J. Am. Chem. Soc. 125, 11900–11910 (2003)CrossRefGoogle Scholar
  8. 8.
    Horinek D., Michl J.: Surface-mounted altitudinal molecular rotors in alternating electric field: Single-molecular parametric oscillator molecular dynamics. Proc. Natl. Acad. Sci. USA 102, 14175–14180 (2005)CrossRefGoogle Scholar
  9. 9.
    Vacek J., Michl J.: A molecular ‘tinkertoy’ construction kit: Computer simulation of molecular propellers. New J. Chem. 21, 1259–1268 (1997)Google Scholar
  10. 10.
    Kay E.R., Leigh D.A., Zerbetto F.: Synthetic molecular motors and mechanical machines. Angew. Chem., Int. Ed. 46, 72–191 (2007)CrossRefGoogle Scholar
  11. 11.
    Mandl C.P., Konig B.: Chemistry in motion-Unidirectional rotating molecular motors. Angew. Chem. Int. Ed. 43, 1622–1624 (2004)CrossRefGoogle Scholar
  12. 12.
    Kelly T.R.: Progress toward a rationally designed molecular motor. Acc. Chem. Res. 34, 514–522 (2001)CrossRefGoogle Scholar
  13. 13.
    Somada H., Hirahara K., Akita S., Nakayama Y.: A molecular linear motor consisting of carbon nanotubes. Nano Lett. 9, 62–65 (2009)CrossRefGoogle Scholar
  14. 14.
    Haidekker M.A., Theodorakis E.A.: Molecular rotors-Fluorescent biosensors for viscosity and flow. Org. Biomol. Chem. 5, 1669–1678 (2007)CrossRefGoogle Scholar
  15. 15.
    Haidekker M.A., Brady T., Wen K., Okada C., Stevens H.Y., Snell J.M., Frangos J.A., Theodorakis E.A.: Phospholipid-bound molecular rotors: synthesis and characterization. Bioorg. Med. Chem. 10, 3627–3636 (2002)CrossRefGoogle Scholar
  16. 16.
    Kuimova M.K., Yahioglu G., Levitt J.A., Suhling K.: Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J. Am. Chem. Soc. 130, 6672–6673 (2008)CrossRefGoogle Scholar
  17. 17.
    Haidekker M.A., Brady T.P., Chalian S.H., Akers W., Lichlyter D., Teodorakis E.A.: Molecular rotor derivatives-Synthesis and characterization. Bioorg. Chem. 32, 274–289 (2004)CrossRefGoogle Scholar
  18. 18.
    Sasaki T., Osgood A.J., Alemany L.B., Kelly K.F., Tour J.M.: Synthesis of a nanocar with an angled chassis. Toward circling movement. Org. Lett. 10, 229–323 (2008)Google Scholar
  19. 19.
    Sasaki T., Tour J.M.: Synthesis of a dipolar nanocar. Tetrahedron Lett. 48, 5821–5824 (2007)CrossRefGoogle Scholar
  20. 20.
    Shirai Y., Osgood A.J., Zhao Y.M., Yao Y.X., Saudan L., Yang H.B., Chiu Y.H., Alemany L.B., Sakaki T., Morin J.F., Guerrero J.M., KellyK.F. Tour J.M.: Surface-rolling molecules. J. Am. Chem. Soc. 128, 4854–4864 (2006)CrossRefGoogle Scholar
  21. 21.
    Chiaravalloti F., Gross L., Rieder K.H., Stojkovic S.M., GourdonA. Joachim C., Moresco F.: A rack-and-pinion device at the molecular scale. Nat. Mater. 6, 30–33 (2007)CrossRefGoogle Scholar
  22. 22.
    Akimov A.V., Nemukhin A.V., Moskovsky A.A., Kolomeisky A.B., Tour J.M.: Molecular dynamics of surface moving thermally driven nanocars. J. Chem. Theory Comput. 4, 652–656 (2008)CrossRefGoogle Scholar
  23. 23.
    Clayden J., Greeves N., Warren S., Wothers P.: Organic Chemistry. Oxford University Press, Oxford (2001)Google Scholar
  24. 24.
    Hermes S., Schroder F., Chelmowski R., Woll C., Fischer R.A.: Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744–13745 (2005)CrossRefGoogle Scholar
  25. 25.
    Hermes S., Zacher D., Baunemann A., Woll C., Fischer R.A.: Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers. Chem. Mater. 19, 2168–2173 (2007)CrossRefGoogle Scholar
  26. 26.
    Biemmi E., Scherb C., Bein T.: Oriented growth of the metal organic framework Cu-3(BTC)(2)(H2O)(3)·xH(2)O tunable with functionalized self-assembled monolayers. J. Am. Chem. Soc. 129, 8054 (2007)CrossRefGoogle Scholar
  27. 27.
    Zacher D., Baunemann A., Hermes S., Fischer R.A.: Deposition of microcrystalline [Cu-3(btc)(2)] and [Zn-2(bdc)(2)(dabco)] at alumina and silica surfaces modified with patterned self assembled organic monolayers: Evidence of surface selective and oriented growth. J. Mater. Chem. 17, 2785–2792 (2007)CrossRefGoogle Scholar
  28. 28.
    Yoo Y., Lai Z., Jeong H.K.: Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater. 123, 100–106 (2009)CrossRefGoogle Scholar
  29. 29.
    Rosi N.L., Eckert J., Eddaoudi M., Vodak D.T., Kim J., O’Keeffe M., Yaghi O.M.: Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)CrossRefGoogle Scholar
  30. 30.
    Rowsell J.L.C., Spencer E.C., Eckert J., Howard J.A.K., Yaghi O.M.: Gas adsorption sites in a large-pore metal-organic framework. Science 309, 1350–1354 (2005)CrossRefGoogle Scholar
  31. 31.
    Babarao R., Hu Z.Q., Jiang J.W., Chempath S., Sandler S.I.: Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: A comparative study from monte carlo simulation. Langmuir 23, 659–666 (2007)CrossRefGoogle Scholar
  32. 32.
    Bordiga S., Lamberti C., Ricchiardi G., Regli L., Bonino F., Damin A., Lillerud K.P., Bjorgen M., Zecchina A.: Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem. Commun. 20, 2300–2301 (2004)CrossRefGoogle Scholar
  33. 33.
    Mueller U., Schubert M., Teich F., Puetter H., Schierle-Arndt K., Pastre J.: Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)CrossRefGoogle Scholar
  34. 34.
    Huang B.L., Ni Z., Millward A., McGaughey A.J.H., Uher C., Kaviany M., Yaghi O.: Thermal conductivity of a metal-organic framework (MOF-5): PartII Measurement. Int. J. Heat Mass Transfer 50, 405–411 (2007)CrossRefGoogle Scholar
  35. 35.
    Civalleri B., Napoli F., Noel Y., Roetti C., Dovesi R.: Ab-initio prediction of materials properties with crystal: MOF-5 as a case study. Cryst. Eng. Comm. 8, 364–371 (2006)Google Scholar
  36. 36.
    Greathouse J.A., Allendorf M.D.: The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 128, 13312–13312 (2006)CrossRefGoogle Scholar
  37. 37.
    Amirjalayer S., Tafipolsky M., Schmid R.: Molecular dynamics simulation of benzene diffusion in MOF-5: Importance of lattice dynamics. Angew. Chem., Int. Ed. 46, 463–466 (2007)CrossRefGoogle Scholar
  38. 38.
    Devi R.N., Edgar M., Gonzalez J., Slawin A.M.Z., Tunstall D.P., GrewalP. Cox P.A., Wright P.A.: Structural studies and computer simulation of the inclusion of aromatic hydrocarbons in a zinc 2,6-naphthalene dicarboxylate framework compound. J. Phys. Chem. B 108, 535–543 (2004)CrossRefGoogle Scholar
  39. 39.
    Winston E.B., Lowell P.J., Vacek J., Chocholousova J., Michl J., Price J.C.: Dipolar molecular rotors in the metal-organic framework crystalIRMOF-2. Phys. Chem. Chem. Phys. 10, 5188–5191 (2008)CrossRefGoogle Scholar
  40. 40.
    Gould S.L., Tranchemontagne D., Yaghi O.M., Garcia-Garibay M.A.: Amphidynamic character of crystalline MOF-5: Rotational dynamics of Terephthalate Phenylenes in a free volume, sterically unhindered environment. J. Am. Chem. Soc. 130, 3246–3247 (2008)CrossRefGoogle Scholar
  41. 41.
    Kawaguchi T., Mamada A., Hosokawa Y., Horii F.: H-2 nmr analysis of the phenylene motion in different poly(ethylene terephthalate) samples. Polymer 39, 2725–2732 (1998)CrossRefGoogle Scholar
  42. 42.
    Cholli A.L., Dumais J.J., Engel A.K., Jelinski L.W.: Aromatic ring flips in a semicrystalline polymer. Macromolecules 17, 2399–2404 (1984)CrossRefGoogle Scholar
  43. 43.
    Tafipolsky M., Amirjalayer S., Schmid R.: Ab initio parametrized MM3 force field for the metal-organic framework MOF-5. J. Comput. Chem. 28, 1169–1176 (2007)CrossRefGoogle Scholar
  44. 44.
    Khuong T.A.V., Zepeda G., Ruiz R., Khan S.I., Garcia-Garibay M.A.: Molecular compasses and gyroscopes: Engineering molecular crystals with fast internal rotation. Cryst. Growth Des. 4, 15–18 (2004)CrossRefGoogle Scholar
  45. 45.
    Ghoniem N.M., Busso E.P., Kioussis N., Huang H.: Multiscale modelling of nanomechanics and micromechanics: An overview. Philos. Mag. 83, 3475–3528 (2003)CrossRefGoogle Scholar
  46. 46.
    Miguel A.G., Carlos E.G.: Engineering crystal packing and internal dynamics in molecular gyroscopes by refining their components Fast exchange of a Phenylene rotator by NMR. Cryst. Growth Des 9, 3124– (2009)CrossRefGoogle Scholar
  47. 47.
    Liang Y., Hilal N., Langston P., Starov V.: Interaction forces between colloidal particles in liquid: Theory and experiment. Adv. Colloid Interface Sci. 134(135), 151–166 (2007)CrossRefGoogle Scholar
  48. 48.
    Cox B.J., Thamwattana N., Hill J.M.: Mechanics of atoms and fullerenes in single-walled carbon nanotubes I Acceptance and suction energies. Proc. R. Soc. London, Ser. A 463, 461 (2007)CrossRefGoogle Scholar
  49. 49.
    Cox B.J., Thamwattana N., Hill J.M.: Mechanics of atoms and fullerenes in single-walled carbon nanotubesII Oscillatory behaviour. Proc. R. Soc. London, Ser. A 463, 477 (2007)CrossRefGoogle Scholar
  50. 50.
    Maitland G.C., Rigby M., Smith E.B., Wakeham W.A.: forces-Their origin and determination. Clarendon Press, Oxford (1981)Google Scholar
  51. 51.
    Fu D.W., Ye H.Y., Ye Q., Pan K.J., Xiong R.G.: Ferroelectric metal-organic coordination polymer with a high dielectric constant. Dalton 7, 874–877 (2007)Google Scholar
  52. 52.
    Ye Q., Song Y.M., Wang G.X., Chen K., Fu D.W., Chan P.W.H., ZhuJ.S. Huang S.D., Xiong R.G.: Ferroelectric metal-organic framework with a high dielectric constant. J. Am. Chem. Soc. 128, 6554–6555 (2006)CrossRefGoogle Scholar
  53. 53.
    Tersoff J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988)CrossRefGoogle Scholar
  54. 54.
    Israelachvili J.: Intermolecular and surface forces. Academic Press, London (1992)Google Scholar
  55. 55.
    Kramers H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284 (1940)CrossRefGoogle Scholar
  56. 56.
    Landauer R., Swanson J.A.: Frequency factors in the thermally activated process. Phys. Rev. 121, 1668–1674 (1961)CrossRefGoogle Scholar
  57. 57.
    Maruyama S., Kimura T. Molecular dynamics simulation of hydrogen storage in single-walled carbon nanotubes. 2000 ASME International Mechanical Engineering Congress and Exhibit November 5–11:1–5, 2000Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Nanomechanics Group, School of Mathematical SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations