Journal of Mathematical Chemistry

, Volume 49, Issue 9, pp 1949–1960 | Cite as

Enzyme kinetics with a twist

Original Paper


A different approach to enzyme kinetics stressing the cyclic nature of the catalytic process is presented. The time-dependence of the substrate concentration is derived in a simple way not invoking the quasi-steady-state approximation. According to this approach the turnover rate can be written as the ratio of two parameters with a direct meaning: enzyme efficiency and average cycle duration. Real kinetic data for two enzyme-substrate pairs is used to show that the enzyme kinetic efficiency is best measured by the turnover rate.


Enzyme kinetics Quasi-steady-state approximation Lambert function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moore J.W., Pearson R.G.: Kinetics and Mechanism, 3rd edn. Wiley, New York (1980)Google Scholar
  2. 2.
    Schulz A.R.: Enzyme Kinetics. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  3. 3.
    Berberan-Santos M.N.: MATCH Commun. Math. Comput. Chem. 63, 283 (2010)Google Scholar
  4. 4.
    Schnell S., Mendoza C.: J. Theor. Biol. 187, 207 (1997)CrossRefGoogle Scholar
  5. 5.
    Tzafriri A.R.: Bull. Math. Biol. 65, 1111 (2003)CrossRefGoogle Scholar
  6. 6.
    Schnell S., Maini P.K.: Comm. Theor. Biol. 8, 169 (2003)CrossRefGoogle Scholar
  7. 7.
    Li B., Shen Y., Li B.: J. Phys. Chem. A 112, 2311 (2008)CrossRefGoogle Scholar
  8. 8.
    Baleizão C., Berberan-Santos M.N.: ChemPhysChem 10, 199 (2009)CrossRefGoogle Scholar
  9. 9.
    Stroppolo M.E., Falconi M., Caccuri A.M., Desideri A.: Cell. Mol. Life Sci. 58, 1451 (2001)CrossRefGoogle Scholar
  10. 10.
    Fernley H.N.: Eur. J. Biochem. 43, 377 (1974)CrossRefGoogle Scholar
  11. 11.
    Berberan-Santos M.N.: MATCH Commun. Math. Comput. Chem. 63, 603 (2010)Google Scholar
  12. 12.
    Gutfreund H.: Kinetics for the Life Sciences. Cambridge University Press, Cambridge (1998)Google Scholar
  13. 13.
    Jennings R.J., Niemann C.: J. Am. Chem. Soc. 77, 5432 (1953)CrossRefGoogle Scholar
  14. 14.
    Rae M., Berberan-Santos M.N.: Chem. Phys. 280, 283 (2002)CrossRefGoogle Scholar
  15. 15.
    English B.P., Min W., van Oijen A.M., Lee K.T., Luo G., Sun H., Cherayil B.J., Kou S.C., Xie X.S.: Nat. Chem. Biol. 2, 87 (2006)CrossRefGoogle Scholar
  16. 16.
    Tzafriri A.R., Edelman E.R.: J. Theor. Biol. 245, 737 (2007)CrossRefGoogle Scholar
  17. 17.
    Chance B.: J. Biol. Chem. 151, 553 (1943)Google Scholar
  18. 18.
    Henri V.: Lois Générales de l’Action des Diastases. Hermann, Paris (1903)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centro de Química-Física Molecular and IN–Institute of Nanoscience and Nanotechnology, Instituto Superior TécnicoUniversidade Técnica de LisboaLisboaPortugal

Personalised recommendations