An analysis for the DIIS acceleration method used in quantum chemistry calculations

  • Thorsten RohwedderEmail author
  • Reinhold Schneider
Original Paper


This work features an analysis for the acceleration technique DIIS that is standardly used in most of the important quantum chemistry codes, e.g. in DFT and Hartree–Fock calculations and in the Coupled Cluster method. Taking up results from Harrison (J Comput Chem 25:328, 2003), we show that for the general nonlinear case, DIIS corresponds to a projected quasi-Newton/secant method. For linear systems, we establish connections to the well-known GMRES solver and transfer according (positive as well as negative) convergence results to DIIS. In particular, we discuss the circumstances under which DIIS exhibits superlinear convergence behaviour. For the general nonlinear case, we then use these results to show that a DIIS step can be interpreted as step of a quasi-Newton method in which the Jacobian used in the Newton step is approximated by finite differences and in which the according linear system is solved by a GMRES procedure, and give according convergence estimates.


DIIS Quantum chemistry Electronic structure calculation Acceleration Nonlinear equations Newton’s method Broyden’s method GMRES SCF algorithms Hartree-Fock 


  1. 1.
    Arioli M., Vlastimil Pták, Strakoš Zdenek: Krylov sequences of maximal length and convergence of GMRES. BIT Numer. Math. 38(4), 636 (1998)CrossRefGoogle Scholar
  2. 2.
    ABINIT is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors, for further details see
  3. 3.
    Beckermann B., Kuijlaars A.B.J.: Superlinear convergence of conjugate gradients. SIAM J. Numer. Anal. 39, 300 (2001)CrossRefGoogle Scholar
  4. 4.
    Beckermann B., Kuijlaars A.B.J.: Superlinear CG convergence for special right-hand sides. Electron. Trans. Numer. Anal. 14, 1 (2002)Google Scholar
  5. 5.
  6. 6.
    Broyden C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 577 (1965)CrossRefGoogle Scholar
  7. 7.
    Broyden C.G., Dennis J.E., Moré J.J.: On the local and superlinear convergence of Quasi-Newton methods. J. Inst. Math. Appl. 12, 223 (1973)CrossRefGoogle Scholar
  8. 8.
    E.J. Bylaska et al., NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1, Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA. A modified version, (2007)Google Scholar
  9. 9.
    Cancès E., Le Bris C.: On the convergence of SCF algorithms for the Hartree-Fock equations. M2AN 34, 749 (2000)CrossRefGoogle Scholar
  10. 10.
    Császár P., Pulay P.: Geometry optimization by direct inversion in the iterative subspace. J. Mol. Struct. 114, 31 (1984)CrossRefGoogle Scholar
  11. 11.
    Dennis J.E. Jr., Schnabel R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)Google Scholar
  12. 12.
    Deuflhard P., Freund R., Waltera A.: Fast secant methods for the iterative solution of large nonsymmetric linear systems. Impact Comput. Sci. Eng. 2(3), 2446 (1990)CrossRefGoogle Scholar
  13. 13.
    Eckert F., Pulay P., Werner H.-J.: Ab initio geometry optimization for large molecules. J. Comput. Chem. 18, 1473 (1997)CrossRefGoogle Scholar
  14. 14.
    Fischer T.H., Almlöf J.: General methods for geometry and wave function optimization. J. Phys. Chem. 92, 9768 (1992)CrossRefGoogle Scholar
  15. 15.
    Gay D.M.: Some convergence properties of Broyden’s method. SIAM J. Numer. Anal. 16, 623 (1979)CrossRefGoogle Scholar
  16. 16.
    Gay D.M., Schnabel R.B.: Solving Systems of Nonlinear Equations by Broyden’s Method with Projected Updates, Nonlinear Programming 3. Academic Press, London (1978)Google Scholar
  17. 17.
    Genovese L., Neelov A., Goedecker S., Deutsch T., Ghasemi S.A., Willand A., Caliste D., Zilberberg O., Rayson M., Bergman A., Schneider R.: Daubechies wavelets as a basis set for density functional pseudopotential calculations. J. Chem. Phys. 129, 014109 (2009)CrossRefGoogle Scholar
  18. 18.
    Gonze X. et al.: Comput. Mater. Sci. 25, 478 (2002)CrossRefGoogle Scholar
  19. 19.
    Gonze X. et al.: Zeit. Kristallogr. 220, 558 (2005)CrossRefGoogle Scholar
  20. 20.
    Griewank A.: The local convergence of Broyden-like Methods on Lipschitzian problems in Hilbert spaces. SIAM Numer. Anal. 24(3), 684 (1987)CrossRefGoogle Scholar
  21. 21.
    Hackbusch W.: Iterative Solution of Large Sparse Systems of Equations. Springer, Berlin (1994)Google Scholar
  22. 22.
    Harrison R.J.: Krylov subspace accelerated inexact Newton method for linear and nonlinear equations. J. Comput. Chem. 25, 328 (2003)CrossRefGoogle Scholar
  23. 23.
    Helgaker T., Jørgensen P., Olsen J.: Molecular Electronic-Structure Theory. Wiley, London (2000)Google Scholar
  24. 24.
    S. Høst, J. Olsen , B. Jansik, L. Thøgersen, P. Jørgensen, T. Helgaker, The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices. J. Chem. Phys. 129(12), PMID: 124106 (2008)Google Scholar
  25. 25.
    Hu X., Yang W.: Accelerating self-consistent field convergence with the augmented RoothaanHall energy function. J. Chem. Phys. 132(5), 054109 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Huang, H. van der Vorst, Some observations on the convergence behavior of GMRES, Tech. Rep. 89-09, Faculty of Technical Mathematics and Informatics, Delft University of Technology, The Netherlands (1989)Google Scholar
  27. 27.
    Kawata M., Kortis C.M., Friesner R.A.: Efficient recursive implementation of the modified Broyden method and the direct inversion in the iterative subspace method: acceleration of self-consistent calculations. J. Chem. Phys. 108(11), 4426 (1998)CrossRefGoogle Scholar
  28. 28.
    Kendall R.A. et al.: Comput. Phys. Commun. 128, 260 (2000)CrossRefGoogle Scholar
  29. 29.
    H.M. Klie, Krylov-secant methods for solving large-scale systems of coupled nonlinear parabolic equations. PhD thesis (Rice University Houston, TX, USA, 1997)Google Scholar
  30. 30.
    Kresse G., Furthmüller J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)CrossRefGoogle Scholar
  31. 31.
    Kudin K.N., Scuseria G.E.: Converging self-consistent field equations in quantum chemistry—recent achievements and remaining challenges. ESAIM: Math. Model. Numer. Anal. 41(2), 281 (2007)CrossRefGoogle Scholar
  32. 32.
    Kudin K.N., Scuseria G.E., Cancès E.: A black-box self-consistent field iteration convergence algorithm: one step closer. J. Chem. Phys. 116, 8255 (2002)CrossRefGoogle Scholar
  33. 33.
    Liesen J., Tichy P.: Convergence analysis of Krylov subspace methods. GAMM-Mitteilungen 27(2), 153 (2004)Google Scholar
  34. 34.
    Marks L.D., Luke D.R.: Robust mixing for ab initio quantum mechanical calculations. Phys. Rev. B 78(8), 075114 (2008)CrossRefGoogle Scholar
  35. 35.
    Martinez J.M., Lopez T.L.: Combination of the sequential secant method and Broyden’s method with projected updates. Computing 25, 379 (1980)CrossRefGoogle Scholar
  36. 36.
    Ortega J.M., Rheinboldt W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, London (1970)Google Scholar
  37. 37.
    Pulay P.: Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett. 73(2), 393 (1980)CrossRefGoogle Scholar
  38. 38.
    Pulay P.: Improved SCF convergence acceleration. J. Comput. Chem. 3(4), 556 (1982)CrossRefGoogle Scholar
  39. 39.
    T. Rohwedder, An analysis for some methods and algorithms of quantum chemistry. PhD thesis, TU Berlin, 2010, available at
  40. 40.
    T. Rohwedder, R. Schneider, The continuous coupled cluster method. Submitted to M2AN, available at
  41. 41.
    Saad Y.: Iterative Methods for Sparse Linear Systems. 2nd edn. SIAM, Philadelphia (2003)CrossRefGoogle Scholar
  42. 42.
    Saad Y., Schultz M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856 (1986)CrossRefGoogle Scholar
  43. 43.
    Schneider R., Rohwedder T., Blauert J., Neelov A.: Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure. J. Comput. Math. 27, 360 (2009)Google Scholar
  44. 44.
    H.H.B. Sørensen, O. Østerby, in On one-point iterations and DIIS. Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP Conference Proceedings, vol 1168, p. 468 (2009)Google Scholar
  45. 45.
    Thogersen L., Olsen J., Köhn A., Jorgensen P., Salek P., Helgaker T.: The trust-region self-consistent field iteration method in Kohn-Sham density functional theory. J. Chem. Phys. 123, 074103 (2005)CrossRefGoogle Scholar
  46. 46.
    van der Vorst H.A., Vuik C.: The superlinear convergence behaviour of GMRES. J. Comput. Appl. Math. 48(3), 327 (1993)CrossRefGoogle Scholar
  47. 47.
    Yang C., Gao W., Meza J.C.: On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 30(4), 1773 (2008)CrossRefGoogle Scholar
  48. 48.
    C. Yang, J.C. Meza, L.-W. Wang, A trust region direct constrained minimization algorithm for the Kohn-Sham equation. SIAM J. Sci. Comput. 29(5), 1854 (electronic), 15A18 (65F15 65K10) (2007)Google Scholar
  49. 49.
    Zółkowski M., Weijo V., Jørgensen P., Olsen J.: An efficient algorithm for solving nonlinear equations with minimal number of trial vectors: Applications to atomic-orbital based coupled-cluster theory. J. Chem. Phys. 128, 204105 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Sekretariat MA 5-3Institut für Mathematik, TU BerlinBerlinGermany

Personalised recommendations