Journal of Mathematical Chemistry

, Volume 50, Issue 3, pp 636–651 | Cite as

A paradox of grid-based representation techniques: accurate eigenvalues from inaccurate matrix elements

  • Viktor Szalay
  • Tamás Szidarovszky
  • Gábor Czakó
  • Attila G. Császár
Original Paper

Abstract

Several approximately variational grid-based representation techniques devised to solve the time-independent nuclear-motion Schrödinger equation share a similar behavior: while the computed eigenpairs, the only results which are of genuine interest, are accurate, many of the underlying Hamiltonian matrix elements are inaccurate, deviating substantially from their values in a variational basis representation. Examples are presented for the discrete variable representation and the Lagrange-mesh approaches, demonstrating that highly accurate eigenvalues and eigenfunctions can be obtained even if some or even all of the Hamiltonian matrix elements in these grid-based representations are inaccurate. It is shown how the apparent contradiction of obtaining accurate eigenpairs with far less accurate individual matrix elements can be resolved by considering the unitary transformation between the representations. Furthermore, the relations connecting orthonormal bases and the corresponding Lagrange bases are generalized to relations connecting nonorthogonal, regularized bases and the corresponding nonorthogonal, regularized Lagrange bases.

Keywords

Grid-based representations Discrete variable representation Lagrange mesh Nuclear–motion Schrodinger equation Singularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lanczos C.: Applied Analysis. Prentice Hall: Engelwood Cliffs, N.J (1956)Google Scholar
  2. 2.
    Harris D.O., Engerholm G.G., Gwinn W.D.: J. Chem. Phys. 43, 1515 (1965)CrossRefGoogle Scholar
  3. 3.
    Dickinson A.S., Certain P.R.: J. Chem. Phys. 49, 4209 (1968)CrossRefGoogle Scholar
  4. 4.
    Lill J.V., Parker G.A., Light J.C.: Chem. Phys. Lett. 89, 483 (1982)CrossRefGoogle Scholar
  5. 5.
    Kosloff D., Kosloff R.: J. Comput. Phys. 52, 35 (1983)CrossRefGoogle Scholar
  6. 6.
    Shizgal B., Blackmore R.: J. Comp. Phys. 55, 313 (1984)CrossRefGoogle Scholar
  7. 7.
    Blackmore R., Shizgal B.: Phys. Rev. A 31, 1855 (1985)CrossRefGoogle Scholar
  8. 8.
    Light J.C., Hamilton I.P., Lill J.V.: J. Chem. Phys. 82, 1400 (1985)CrossRefGoogle Scholar
  9. 9.
    Szalay V.: J. Chem. Phys. 105, 6940 (1996)CrossRefGoogle Scholar
  10. 10.
    Marston C.C., Bálint-Kürti G.G.: J. Chem. Phys. 91, 3571 (1989)CrossRefGoogle Scholar
  11. 11.
    Leforestier C.: J. Chem. Phys. 94, 6388 (1991)CrossRefGoogle Scholar
  12. 12.
    Kosloff R.: J. Phys. Chem. 92, 2087 (1988)CrossRefGoogle Scholar
  13. 13.
    Bacic Z., Whitnell R.M., Brown D., Light J.C.: Comp. Phys. Comm. 51, 35 (1988)CrossRefGoogle Scholar
  14. 14.
    Bacic Z., Light J.C.: Annu. Rev. Phys. Chem. 40, 469 (1989)CrossRefGoogle Scholar
  15. 15.
    Light J.C., Carrington T.: Adv. Chem. Phys. 114, 263 (2000)CrossRefGoogle Scholar
  16. 16.
    Baye D., Heenen P.H.: J. Phys. A 19, 2041 (1986)CrossRefGoogle Scholar
  17. 17.
    Friesner R.A.: J. Chem. Phys. 85, 1462 (1986)CrossRefGoogle Scholar
  18. 18.
    Friesner R.A.: Annu. Rev. Phys. Chem. 42, 341 (1991)CrossRefGoogle Scholar
  19. 19.
    Vincke M., Malegat L., Baye D.: J. Phys. B 26, 811 (1993)CrossRefGoogle Scholar
  20. 20.
    Semay C., Baye D., Hesse M., Silvestre-Brac B.: Phys. Rev. E 64, 016703 (2001)CrossRefGoogle Scholar
  21. 21.
    Hesse M.: Phys. Rev. E 65, 046703 (2001)CrossRefGoogle Scholar
  22. 22.
    Baye D., Vincke M.: J. Phys. B 24, 3551 (1991)CrossRefGoogle Scholar
  23. 23.
    Baye D., Kruglanski M., Vincke M.: Nucl. Phys. A 573, 431 (1994)CrossRefGoogle Scholar
  24. 24.
    Baye D.: Nucl. Phys. A 627, 305 (1997)CrossRefGoogle Scholar
  25. 25.
    Baye D., Hesse M., Sparenberg J.-M., Vincke M.: J. Phys. B 31, 3439 (1998)CrossRefGoogle Scholar
  26. 26.
    Hesse M., Sparenberg J.-M., van Raemdonck F., Baye D.: Nucl. Phys. A 640, 37 (1998)CrossRefGoogle Scholar
  27. 27.
    Hesse M., Baye D.: J. Phys. B 32, 5605 (1999)CrossRefGoogle Scholar
  28. 28.
    Hesse M., Baye D.: J. Phys. B 34, 1425 (2001)CrossRefGoogle Scholar
  29. 29.
    Baye D., Hesse M., Vincke M.: Phys. Rev. E 65, 026701 (2002)CrossRefGoogle Scholar
  30. 30.
    Tennyson J., Sutcliffe B.T.: Int. J. Quant. Chem. 42, 941 (1992)CrossRefGoogle Scholar
  31. 31.
    Szalay V., Czakó G., Nagy Á., Furtenbacher T., Császár A.G.: J. Chem. Phys. 119, 10512 (2003)CrossRefGoogle Scholar
  32. 32.
    Littlejohn R.G., Cargo M., Mitchell K., Carrington T. Jr, Poirier B.: J. Chem. Phys. 116, 8691 (2002)CrossRefGoogle Scholar
  33. 33.
    Yang W., Peet A.C.: Chem. Phys. Lett. 153, 98 (1988)CrossRefGoogle Scholar
  34. 34.
    Kaufer S., Shapiro M.: J. Phys. Chem. 88, 3964 (1984)CrossRefGoogle Scholar
  35. 35.
    Schiffel G., Manthe U.: Chem. Phys. 374, 118 (2010)CrossRefGoogle Scholar
  36. 36.
    Peng L.-Y., Starace A.F.: J. Chem. Phys. 125, 154311 (2006)CrossRefGoogle Scholar
  37. 37.
    Henderson J.R., Tennyson J.: Chem. Phys. Lett. 173, 133 (1990)CrossRefGoogle Scholar
  38. 38.
    Henderson J.R., Tennyson J., Sutcliffe B.T.: J. Chem. Phys. 98, 7191 (1993)CrossRefGoogle Scholar
  39. 39.
    Klepeis N.E., East A.L.L., Császár A.G., Allen W.D., Lee T.J., Schwenke D.W.: J. Chem. Phys. 99, 3865 (1993)CrossRefGoogle Scholar
  40. 40.
    Wang X.-G., Carrington T. Jr: J. Chem. Phys. 129, 234102 (2008)CrossRefGoogle Scholar
  41. 41.
    Tennyson J., Kostin M.A., Barletta P., Harris G.J., Polyansky O.L., Ramanlal J., Zobov N.F.: Comp. Phys. Comm. 163, 85 (2004)CrossRefGoogle Scholar
  42. 42.
    Yurchenko S.N., Thiel W., Jensen P.: J. Mol. Spectrosc. 245, 126 (2007)CrossRefGoogle Scholar
  43. 43.
    Polyansky O.L., Császár A.G., Shirin S.V., Zobov N.F., Barletta P., Tennyson J., Schwenke D.W., Knowles P.J.: Science 299, 539 (2003)CrossRefGoogle Scholar
  44. 44.
    Mátyus E., Czakó G., Császár A.G.: J. Chem. Phys. 130, 134112 (2009)CrossRefGoogle Scholar
  45. 45.
    Fábri C., Mátyus E., Császár A.G.: J. Chem. Phys. 134, 074105 (2011)CrossRefGoogle Scholar
  46. 46.
    Luckhaus D.: J. Chem. Phys. 113, 1329 (2000)CrossRefGoogle Scholar
  47. 47.
    Lauvergnat D., Nauts A.: J. Chem. Phys. 116, 8560 (2002)CrossRefGoogle Scholar
  48. 48.
    Mátyus E., Czakó G., Sutcliffe B.T., Császár AG.: J. Chem. Phys. 127, 084102 (2007)CrossRefGoogle Scholar
  49. 49.
    Mátyus E., Šimunek J., Császár A.G.: J. Chem. Phys. 131, 074106 (2009)CrossRefGoogle Scholar
  50. 50.
    Munro J.J., Ramanlal J., Tennyson J., Mussa H.Y.: Mol. Phys. 104, 115 (2006)CrossRefGoogle Scholar
  51. 51.
    Huang X., Schwenke D.W., Lee T.J.: J. Chem. Phys. 129, 214304 (2008)CrossRefGoogle Scholar
  52. 52.
    Szidarovszky T., Császár A.G., Czakó G.: Phys. Chem. Chem. Phys. 12, 8373 (2010)CrossRefGoogle Scholar
  53. 53.
    Császár A.G., Mátyus E., Szidarovszky T., Lodi L., Zobov N.F., Shirin S.V., Polyansky O.L., Tennyson J.: J. Quant. Spectr. Rad. Transfer 111, 1043 (2010)CrossRefGoogle Scholar
  54. 54.
    Tennyson J., Bernath P.F., Brown L.R., Campargue A., Carleer M.R., Császár A.G., Gamache R.R., Hodges J.T., Jenouvrier A., Naumenko O.V., Polyansky O.L., Rothman L.S., Toth R.A., Vandaele A.C., Zobov N.F., Daumont L., Fazliev A.Z., Furtenbacher T., Gordon I.F., Mikhailenko S.N., Shirin S.V.: J. Quant. Spectr. Rad. Transfer 110, 573 (2009)CrossRefGoogle Scholar
  55. 55.
    Tennyson J., Bernath P.F., Brown L.R., Campargue A., Carleer M.R., Császár A.G., Daumont L., Gamache R.R., Hodges J.T., Jenouvrier A., Naumenko O.V., Polyansky O.L., Rothman L.S., Toth R.A., Vandaele A.C., Zobov N.F., Fazliev A.Z., Furtenbacher T., Gordon I.F., Hu S.-M., Mikhailenko S.N., Voronin B.: J. Quant. Spectr. Rad. Transf. 111, 2160 (2010)CrossRefGoogle Scholar
  56. 56.
    C. Fábri, E. Mátyus, T. Furtenbacher, L. Nemes, B. Mihály, T. Zoltáni, A.G. Császár, J. Chem. Phys. (2011, in press)Google Scholar
  57. 57.
    Seideman T., Miller W.H.: J. Chem. Phys. 97, 2499 (1992)CrossRefGoogle Scholar
  58. 58.
    Clary D.C.: Proc. Natl. Acad. Sci. USA 105, 12654 (2008)CrossRefGoogle Scholar
  59. 59.
    Bastida A., Zuniga J., Requena A., Halberstadt N., Beswick J.A.: Chem. Phys 240, 229 (1999)CrossRefGoogle Scholar
  60. 60.
    Neuhauser D.: J. Chem. Phys. 100, 9272 (1994)CrossRefGoogle Scholar
  61. 61.
    Zhang D.H., Zhang J.Z.H.: J. Chem. Phys. 101, 1146 (1994)CrossRefGoogle Scholar
  62. 62.
    Meyer H.-D., Manthe U., Cederbaum L.S.: Chem. Phys. Lett. 165, 73 (1990)CrossRefGoogle Scholar
  63. 63.
    Manthe U., Meyer H.-D., Cederbaum L.S.: J. Chem. Phys. 97, 3199 (1992)CrossRefGoogle Scholar
  64. 64.
    Colbert D.T., Miller W.H.: J. Chem. Phys. 96, 1982 (1992)CrossRefGoogle Scholar
  65. 65.
    Carter S., Meyer W.: J. Chem. Phys. 96, 2424 (1992)CrossRefGoogle Scholar
  66. 66.
    Tennyson J., Sutcliffe B.T.: J. Mol. Spectrosc. 101, 71 (1983)CrossRefGoogle Scholar
  67. 67.
    Szalay V.: J. Chem. Phys. 99, 1978 (1993)CrossRefGoogle Scholar
  68. 68.
    Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical recipes in C, the art of scientific computing, 2nd edn, pp. 150. Cambridge University Press, Cambridge (1992)Google Scholar
  69. 69.
    Littlejohn R.G., Cargo M.: J. Chem. Phys. 117, 27 (2002)CrossRefGoogle Scholar
  70. 70.
    Littlejohn R.G., Reinsch M.: Rev. Mod. Phys. 69, 213 (1997)CrossRefGoogle Scholar
  71. 71.
    Meremianin A.V., Briggs J.S.: Phys. Rep. 384, 121 (2003)CrossRefGoogle Scholar
  72. 72.
    Czakó G., Furtenbacher T., Barletta P., Császár A.G., Szalay V., Sutcliffe B.T.: Phys. Chem. Chem. Phys. 9, 3407 (2007)CrossRefGoogle Scholar
  73. 73.
    Watson J.K.G.: Can. J. Phys. 72, 702 (1994)CrossRefGoogle Scholar
  74. 74.
    Czakó G., Szalay V., Császár A.G.: J. Chem. Phys. 124, 014110 (2006)CrossRefGoogle Scholar
  75. 75.
    Bramley M.J., Tromp J.W., Carrington T. Jr, Corey G.C.: J. Chem. Phys. 100, 6175 (1994)CrossRefGoogle Scholar
  76. 76.
    Czakó G., Szalay V., Császár A.G., Furtenbacher T.: J. Chem. Phys. 122, 024101 (2005)CrossRefGoogle Scholar
  77. 77.
    Szalay V.: J. Chem. Phys. 125, 154115 (2006)CrossRefGoogle Scholar
  78. 78.
    Echave J., Clary D.C.: Chem. Phys. Lett. 190, 225 (1992)CrossRefGoogle Scholar
  79. 79.
    Wei H., Carrington T. Jr: J. Chem. Phys. 97, 3029 (1992)CrossRefGoogle Scholar
  80. 80.
    G. Szego, Orthogonal Polynomials, Am. Math. Soc. (1939)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Viktor Szalay
    • 1
  • Tamás Szidarovszky
    • 2
  • Gábor Czakó
    • 2
    • 3
  • Attila G. Császár
    • 2
  1. 1.Research Institute for Solid State Physics and OpticsHungarian Academy of SciencesBudapestHungary
  2. 2.Laboratory of Molecular SpectroscopyEötvös UniversityBudapest 112Hungary
  3. 3.Cherry L. Emerson Center for Scientific Computation and Department of ChemistryEmory UniversityAtlantaUSA

Personalised recommendations