Journal of Mathematical Chemistry

, Volume 49, Issue 8, pp 1535–1543 | Cite as

Eigenvalue lower bounds with Bazley’s special choice of an infinite-dimensional subspace

Original Paper


Bazley’s special choice of a finite-dimensional space to construct an intermediate operator between a base operator and the full Hamiltonian is a standard technique to calculate lower bounds to the energies of a system. We modify Bazley’s method to accommodate an infinite-dimensional space that is complete in one particle of the system. An application to the helium atom shows improvement in the lower bound to the ground-state energy, indicating promise in our method. However, significant problems are revealed which include (1) poorer bounds for the excited states, (2) lack of symmetry in the intermediate operator, and (3) lack of direction for improvement.


Lower bounds Bazley Special choice Helium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marmorino M.G.: J. Math. Chem. 34, 59 (2003)CrossRefGoogle Scholar
  2. 2.
    Weinstein A., Stenger W.: Methods of Intermediate Problems for Eigenvalues. Academic Press Inc, New York (1972)Google Scholar
  3. 3.
    Bazley N.W.: Phys. Rev. 120, 144 (1960)CrossRefGoogle Scholar
  4. 4.
    Marmorino M.G.: J. Math. Chem. 43, 966 (2007)CrossRefGoogle Scholar
  5. 5.
    Jen C.K.: Phys. Rev. 43, 540 (1933)CrossRefGoogle Scholar
  6. 6.
    Thakkar A.J., Koga T.: Phys. Rev. A 50, 584 (1994)CrossRefGoogle Scholar
  7. 7.
    Kleindienst H., Lüchow A., Merckens H.-P.: Chem. Phys. Lett. 218, 441 (1994)CrossRefGoogle Scholar
  8. 8.
    Temple G.: Proc. R. Soc. Lond. Ser. A 119, 276 (1928)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryIndiana University South BendSouth BendUSA

Personalised recommendations